首页 | 本学科首页   官方微博 | 高级检索  
检索        

氢氧化锂吸收剂用于清除闭式/半闭式潜水呼吸器二氧化碳的实验研究
引用本文:顾靖华,方以群,袁恒荣,刘平小.氢氧化锂吸收剂用于清除闭式/半闭式潜水呼吸器二氧化碳的实验研究[J].中华航海医学与高气压医学杂志,2011,18(2).
作者姓名:顾靖华  方以群  袁恒荣  刘平小
作者单位:海军医学研究所,上海,200433
摘    要:目的 探讨氢氧化锂吸收剂清除闭式/半闭式潜水呼吸器二氧化碳(CO2)的适用性.方法 选择1种氧氧化锂吸收剂和2种经典的钠石灰吸收剂(钠石灰1、钠石灰2),采用人工肺与国产某闭式潜水呼吸器进行无人实验.定时记录吸收剂罐内的温度及吸收剂罐出EI端气体中CO2 浓度,当CO2 浓度超过1.5%时停止试验,并记录CO2浓度达到0.5%和1.5%的准确时间(T0.5、T1.5).比较填充量、温度、CO2:达到0.5%和1.5%的时间.结果 相同吸收剂罐,氢氧化锂吸收剂的填充质量最小,为1113.5 g,明显低于经典钠石灰吸收剂的填充质量(1845.0 g和1855.5 g),对于克服呼吸器的正浮力是不利的;使用氢氧化锂吸收剂时,吸收剂罐出口端气体中CO2的T0.5和T1.5分别为(86.00±1.63)min和(119.00±2.94)min,钠石灰1的T0.5和T15分别为(55.00±0.82)min和(62.00±1.63)min,钠石灰2的T0.5和T1.5分别为(57.00±2.45)min和(65.00±1.63)min,氢氧化锂吸收剂的使用时间显著长于经典钠石灰吸收剂(P<0.05),吸收效率好;使用氢氧化锂吸收剂时,吸收剂罐内的温度最高达到191.5℃,是钠石灰1(74.8℃)的2.56倍,是钠石灰2(83.6℃)的2.29倍.结论 本研究采用的氢氧化锂吸收剂可能不适合用作闭式/半闭式潜水呼吸器的CO2吸收剂.
Abstract:
Objective To investigate the applicability of lithium hydroxide ( LiOH) absorbent in closed/semi-closed diving apparatus. Methods One LiOH absorbent and 2 classical sodium lime absorbents ( sodium lime 1 and sodium lime 2) were chosen to carry out unmanned experiments by using the manual lung and a closed breathing apparatus. Temperature in the canister and CO2 level at the outlet of the canister were timely monitored and recorded. When CO2 level in the inhaled gas exceeded 1.5%, the experiment was terminated, and the time when CO2 levels reached at 0. 5% and 1. 5% was recorded. The amounts of absorbents filled, temperatures and the time when CO2 levels reached at 0. 5% and 1.5% were recorded. Results The weight of the LiOH absorbent was minimal (1113. 5 g), which was obviously less than the classical absorbent, sodium lime 1 and sodium lime 2( 1845.0 g and 1855.5 g),which was a disadvantage to the positive buoyancy of the diving apparatus. With the LiOH absorbent, the time for CO2 to reach 0.5% (T0.5) and 1.5% (T1.5) was 86.00 ± 1. 63 min and 119. 00 ± 2. 94 min respectively. While for sodium lime 1, the time for T0.5 and T1.5 were 55. 00 ±0. 82min and 62. 00 ± 1. 63min and for sodium lime 2, the time for T0.5 and T1.5 were 57. 00 ± 2.45min and 65. 00 ± 1. 63min respectively. The T1.5 and T1.5 of the LiOH absorber were obviously longer than those of sodium lime 1 and sodium lime 2 (P<0. 05). The maximum temperature in the LiOH canister was 191. 5℃,which was 2. 56 times greater than that of sodium lime 1 (74. 8℃) ,and 2. 29 times greater than that of sodium lime 2 (83. 6 ℃ ). Conclusions This kind of LiOH absorber might not be suitable to closed/semi-closed diving apparatus.

关 键 词:潜水呼吸器  二氧化碳吸收剂  氢氧化锂

Experimental research on carbon dioxide absorption of closed/semi-closed diving apparatus using lithium hydroxide absorbent
GU Jing-hua,FANG Yi-qun,YUAN Heng-rong,LIU Ping-xiao.Experimental research on carbon dioxide absorption of closed/semi-closed diving apparatus using lithium hydroxide absorbent[J].Chinese Journal of Nautical Medicine and Hyperbaric Medicine,2011,18(2).
Authors:GU Jing-hua  FANG Yi-qun  YUAN Heng-rong  LIU Ping-xiao
Abstract:Objective To investigate the applicability of lithium hydroxide ( LiOH) absorbent in closed/semi-closed diving apparatus. Methods One LiOH absorbent and 2 classical sodium lime absorbents ( sodium lime 1 and sodium lime 2) were chosen to carry out unmanned experiments by using the manual lung and a closed breathing apparatus. Temperature in the canister and CO2 level at the outlet of the canister were timely monitored and recorded. When CO2 level in the inhaled gas exceeded 1.5%, the experiment was terminated, and the time when CO2 levels reached at 0. 5% and 1. 5% was recorded. The amounts of absorbents filled, temperatures and the time when CO2 levels reached at 0. 5% and 1.5% were recorded. Results The weight of the LiOH absorbent was minimal (1113. 5 g), which was obviously less than the classical absorbent, sodium lime 1 and sodium lime 2( 1845.0 g and 1855.5 g),which was a disadvantage to the positive buoyancy of the diving apparatus. With the LiOH absorbent, the time for CO2 to reach 0.5% (T0.5) and 1.5% (T1.5) was 86.00 ± 1. 63 min and 119. 00 ± 2. 94 min respectively. While for sodium lime 1, the time for T0.5 and T1.5 were 55. 00 ±0. 82min and 62. 00 ± 1. 63min and for sodium lime 2, the time for T0.5 and T1.5 were 57. 00 ± 2.45min and 65. 00 ± 1. 63min respectively. The T1.5 and T1.5 of the LiOH absorber were obviously longer than those of sodium lime 1 and sodium lime 2 (P<0. 05). The maximum temperature in the LiOH canister was 191. 5℃,which was 2. 56 times greater than that of sodium lime 1 (74. 8℃) ,and 2. 29 times greater than that of sodium lime 2 (83. 6 ℃ ). Conclusions This kind of LiOH absorber might not be suitable to closed/semi-closed diving apparatus.
Keywords:Diving apparatus  Carbon dioxide absorbent  Lithium hydroxide
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号