首页 | 本学科首页   官方微博 | 高级检索  
     


Vertebral stress of a cervical spine model under dynamic load.
Authors:A M Sadegh  A Tchako
Affiliation:Department of Mechanical Engineering, The City College of The City University of New York, NY 10031, USA.
Abstract:The objective of this study is to develop cervical spine models that predict the stresses in each vertebra by taking account of the biodynamic characteristics of the neck. The loads and the moments at the head point (Occipital Condyle) used for the models were determined by the rigid body dynamic response of the head due to G-z acceleration. The experimental data used were collected from the biodynamic responses of human volunteers during an acceleration in the z direction on the drop tower facility at Armstrong Laboratory at Wright Patterson Air Force Base (WPAFB). Three finite element models were developed: an elastic local model, viscoelastic local model and complete viscoelastic model. I-DEAS software was used to create the solid models, the loadings and the boundary conditions. Then, ABAQUS finite element software was employed to solve the models, and thus the stresses on each vertebral level were determined. Beam elements with different properties were employed to simulate the ligaments, articular facets and muscles. The complete viscoelastic model was subjected to 11 cases of loadings ranging from 8 G-z to 20 G-z accelerations. The von Mises and Maximum Principal stress fields, which are good indicators of bone failure, were calculated for all the cases. The results indicated that the maximum stress in all cases increased as the magnitude of the acceleration increased. The stresses in the 10 to 12 G-z cases were comfortably below the injury threshold level. The majority of the maximum stresses occurred in C6 and C4 regions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号