首页 | 本学科首页   官方微博 | 高级检索  
     


Neurotransmitter receptor heteromers and their integrative role in 'local modules': the striatal spine module
Authors:Ferré Sergi  Agnati Luigi F  Ciruela Francisco  Lluis Carme  Woods Amina S  Fuxe Kjell  Franco Rafael
Affiliation:Sergi Ferré, Luigi F. Agnati, Francisco Ciruela, Carme Lluis, Amina S. Woods, Kjell Fuxe,Rafael Franco
Abstract:‘Local module’ is a fundamental functional unit of the central nervous system that can be defined as the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit. This review focuses on the importance of neurotransmitter receptor heteromers for the operation of local modules. To illustrate this, we use the striatal spine module (SSM), comprised of the dendritic spine of the medium spiny neuron (MSN), its glutamatergic and dopaminergic terminals and astroglial processes. The SSM is found in the striatum, and although aspects such as neurotransmitters and receptors will be specific to the SSM, some general principles should apply to any local module in the brain. The analysis of some of the receptor heteromers in the SSM shows that receptor heteromerization is associated with particular elaborated functions in this local module. Adenosine A2A receptor–dopamine D2 receptor–glutamate metabotropic mGlu5 receptor heteromers are located adjacent to the glutamatergic synapse of the dendritic spine of the enkephalin MSN, and their cross-talk within the receptor heteromers helps to modulate postsynaptic plastic changes at the glutamatergic synapse. A1 receptor–A2A receptor heteromers are found in the glutamatergic terminals and the molecular cross-talk between the two receptors in the heteromer helps to modulate glutamate release. Finally, dopamine D2 receptor–non-α7 nicotinic acetylcholine receptor heteromers, which are located in dopaminergic terminals, introduce the new concept of autoreceptor heteromer.
Keywords:Local module   Receptor heteromer   Volume transmission   Dopamine   Glutamate   Acetylcholine   Adenosine   Striatum
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号