首页 | 本学科首页   官方微博 | 高级检索  
检索        


VEGFR2-Targeted Molecular Imaging in the Mouse Embryo: An Alternative to the Tumor Model
Authors:Janet M Denbeigh  Brian A Nixon  John M Hudson  Mira C Puri  F Stuart Foster
Institution: Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
Abstract:As a tumor surrogate, the mouse embryo presents as an excellent alternative for examining the binding of angiogenesis-targeting microbubbles and assessing the quantitative nature of molecular ultrasound. We establish the validity of this model by developing a robust method to study microbubble kinetic behavior and investigate the reproducibility of targeted binding in the murine embryo. Vascular endothelial growth factor receptor 2 (VEGFR2)-targeted (MBV), rat immunoglobulin G2 (IgG2) control antibody-targeted (MBC) and untargeted (MBU) microbubbles were introduced into vasculature of living mouse embryos. Non-linear contrast-specific and B-mode ultrasound imaging, performed at 21 MHz with a Vevo-2100 scanner, was used to collect basic perfusion parameters and contrast mean power ratios for all bubble types. We observed a twofold increase (p < 0.001) in contrast mean power ratios for MBV (4.14 ± 1.78) compared with those for MBC (1.95 ± 0.78) and MBU (1.79 ± 0.45). Targeted imaging of endogenous endothelial cell surface markers in mouse embryos is possible with labeled microbubbles. The mouse embryo thus presents as a versatile model for testing the performance of ultrasound molecular targeting, where further development of quantitative imaging techniques may enable rapid evaluations of biomarker expression in studies of vascular development, disease and angiogenesis.
Keywords:Micro-ultrasound  Molecular imaging  Mouse embryo  Microbubble contrast agent  Vascular endothelial growth factor receptor 2
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号