首页 | 本学科首页   官方微博 | 高级检索  
     


Toxicity and metabolism of p-chlorophenol in the marine microalga Tetraselmis marina
Authors:Petroutsos Dimitris  Wang Jiangxin  Katapodis Petros  Kekos Dimitris  Sommerfeld Milton  Hu Qiang
Affiliation:Department of Applied Biological Sciences, Arizona State University Polytechnic Campus, 7001 E. Williams Field Road, Mesa, AZ 85212, USA.
Abstract:Toxicity and metabolism of para-chlorophenol (p-CP) in the marine microalga Tetraselmis marina have been studied. The inhibition constant EC(50) for p-CP was 272+/-17 microM (34.8+/-2.2 mg L(-1)) under the experimental conditions. Two metabolites were detected in the growth medium in the presence of p-CP by reverse phase HPLC and their concentrations increased at the expense of p-CP. The two metabolites, which were found to be more polar than p-CP, were isolated by a C18 column. They were identified as p-chlorophenyl-beta-D-glucopyranoside (p-CPG) and p-chlorophenyl-beta-D-(6-O-malonyl)-glucopyranoside (p-CPGM) by electrospray ionization-mass spectrometric analysis in a negative ion mode. The molecular structures of p-CPG and p-CPGM were further confirmed by enzymatic and alkaline hydrolyses. Treatment with beta-glucosidase released free p-CP and glucose from p-CPG, whereas p-CPGM was completely resistant. Alkaline hydrolysis completely cleaved the esteric bond of the malonylated glucoconjugate and yielded p-CPG and malonic acid. It was concluded that the pathway of p-CP metabolism in T. marina involves an initial conjugation of p-CP to glucose to form p-chlorophenyl-beta-d-glucopyranoside, followed by acylation of the glucoconjugate to form p-chlorophenyl-beta-D-(6-O-malonyl)-glucopyranoside. The metabolism of p-CP in T. marina was mainly driven by photosynthesis, and to a lesser extent by anabolic metabolism in the dark. Accordingly, the detoxification rate under light was about seven times higher than in the darkness. This work provides the first evidence that microalgae can adopt a combined glucosyl transfer and malonyl transfer process as a survival strategy for detoxification of such xenobiotics as p-CP.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号