首页 | 本学科首页   官方微博 | 高级检索  
检索        


Predicting the quality of powders for inhalation from surface energy and area
Authors:Cline David  Dalby Richard
Institution:(1) Department of Pharmaceutical Sciences, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, Maryland, 21201
Abstract:Purpose. To correlate the surface energy of active and carrier components in an aerosol powder to in vitro performance of a passive dry powder inhaler. Methods. Inverse gas chromatography (IGC) was used to assess the surface energy of active (albuterol and ipratropium bromide) and carrier (lactose monohydrate, trehalose dihydrate and mannitol) components of a dry powder inhaler formulation. Blends (1%w/w) of drug and carrier were prepared and evaluated for dry powder inhaler performance by cascade impaction. The formulations were tested with either of two passive dry powder inhalers, Rotahaler® (GlaxoSmithKline) or Handihaler® (Boehringer Ingelheim). Results. In vitro performance of the powder blends was strongly correlated to surface energy interaction between active and carrier components. Plotting fine particle fraction vs. surface energy interaction yielded an R2 value of 0.9283. Increasing surface energy interaction between drug and carrier resulted in greater fine particle fraction of drug. Conclusions. A convincing relationship, potentially useful for rapid formulation design and screening, was found between the surface energy and area parameters derived from IGC and dry powder inhaler performance.
Keywords:inverse gas chromatography  dry powder inhalers  surface energy  cascade impaction
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号