首页 | 本学科首页   官方微博 | 高级检索  
     

多水平模型在中国人群肥胖的省级社会影响因素分析中的应用
引用本文:何柳, 吴静, 王丽敏, 李镒冲, 张梅, 梁晓峰. 多水平模型在中国人群肥胖的省级社会影响因素分析中的应用[J]. 中华疾病控制杂志, 2016, 20(6): 625-629. doi: 10.16462/j.cnki.zhjbkz.2016.06.021
作者姓名:何柳  吴静  王丽敏  李镒冲  张梅  梁晓峰
作者单位:1. 中国疾病预防控制中心慢性病防治与社区卫生处, 北京 102206;;;2. 中国疾病预防控制中心慢性非传染性疾病预防控制中心, 北京 100050;;;3. 中国疾病预防控制中心, 北京 102206
摘    要:目的 采用多水平模型的方法探索中国人群省级水平社会因素对个体肥胖患病的影响。方法 采用多水平建模的方法,利用2007年慢性病与危险因素监测18~69岁人群数据作为研究结局和个体水平因素,收集国家统计局2007年分省年度数据,通过因子分析方法获得省级社会发展综合指标,分析其与个体体质指数(body mass index,BMI)、肥胖和中心性肥胖的关联关系。结果 2007年,全国范围内18~69岁人群的BMI平均值为(23.27±3.37)kg/m2,肥胖率为8.49%,中心性肥胖率为30.92%。从7个与社会经济、医疗卫生资源、生活环境有关的省级社会因素提取出2个省级水平因子作为各省社会发展综合指标,发现代表居民消费水平和医疗卫生资源充足程度的省级因子与个体BMI、肥胖、中心性肥胖的关联均无统计学意义(均有P>0.05),而代表社会经济综合发展程度的省级因子与个体BMI(OR=1.09,95% CI:1.04~1.10)、肥胖(OR=1.17,95% CI:1.07~1.28)、中心性肥胖(OR=1.19,95% CI:1.10~1.30)有正向的关联关系。结论 在中国,社会经济综合发展程度较好的地区,个体发生肥胖的风险可能较大。利用多水平模型探索影响个体肥胖等慢性病的地区社会因素,可为卫生政策制定者提供科学证据,引导卫生资源合理分配,具有重要公共卫生意义。

关 键 词:模型  统计学   肥胖症   因素分析  统计学
收稿时间:2015-12-30
修稿时间:2016-03-03

Application of multilevel models in analyzing on province-level social determinants of obesity in China
HE Liu, WU Jing, WANG Li-min, LI Yi-chong, ZHANG Mei, LIANG Xiao-feng. Application of multilevel models in analyzing on province-level social determinants of obesity in China[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2016, 20(6): 625-629. doi: 10.16462/j.cnki.zhjbkz.2016.06.021
Authors:HE Liu  WU Jing  WANG Li-min  LI Yi-chong  ZHANG Mei  LIANG Xiao-feng
Affiliation:1. Division of Non-Communicable Disease Control & Community Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China;;;2. The National Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China;;;3. Chinese Center for Disease Control and Prevention, Beijing 102206, China
Abstract:Objective To explore province-level social determinants of obesity in Chinese population, using multilevel analysis. Methods Information of individual outcomes and individual-level variables was acquired from data of Chronic Disease Risk Factor Surveillance in China, 2007, while province-level factors were extracted from 7 social indicators, which were obtained from data of National Bureau of Statistics, using factor analysis method. Then, multilevel models were built to calculate the correlations of province-level factors with body mass index (BMI), obesity and central obesity. Results Among the nationwide population aged 18-69 years in 2007, mean BMI level was (23.27±3.37) kg/m2, rate of obesity and central obesity was 8.49% and 30.92%, respectively. Two province-level factors were extracted from 7 social indicators, and factor 2, which represented the provincial social and economic comprehensive development level, was found positively correlated with BMI (OR=1.09, 95% CI:1.04-1.10), obesity (OR=1.17, 95% CI:1.07-1.28) and central obesity (OR=1.19, 95% CI:1.10-1.30), while factor 1, which represented the provincial level of residents' consumption and health service, wasn't found statistically correlated with these three outcomes(all P>0.05). Conclusions In China, higher provincial social-economic comprehensive development level might be a risk factor for individual obesity, especially central obesity, which indicated that limited resources for obesity prevention and control may need to be allocated to provinces or regions with higher economic development level. In conclusion, in order to provide more evidence on improving the efficiency of non-communicable diseases (NCDs) prevention and control and help the Chinese policy makers to allocate health resources more reasonably, multilevel models could be used to perform researches on area-level social-economic influencers of NCDs.
Keywords:Models, statistical  Obesity  Factor analysis, statistical
本文献已被 万方数据 等数据库收录!
点击此处可从《中华疾病控制杂志》浏览原始摘要信息
点击此处可从《中华疾病控制杂志》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号