首页 | 本学科首页   官方微博 | 高级检索  
检索        


Enhanced stability of sulfamethoxazole and trimethoprim against oxidation using hydroxypropyl-beta-cyclodextrin
Authors:Pourmokhtar M  Jacobson G A
Institution:School of Pharmacy, University of Tasmania, Hobart, Australia.
Abstract:The effect of hydroxypropyl-beta-cyclodextrin (HPbetaCD) on the chemical stability of sulfamethoxazole and trimethoprim (co-trimoxazole) under oxidation stress at 50 +/- 2 degrees C was investigated. The concentrations of sulfamethoxazole and trimethoprim in aqueous solutions (pH 5.4) containing 0, 1%, 2%, 5%, 10% and 15% w/v hydroxypropyl-beta-cyclodextrin were measured by HPLC. Both sulfamethoxazole and trimethoprim degradation appeared to follow pseudo-first order kinetics in the presence and in the absence of hydroxypropyl-beta-cyclodextrin. The observed half-lives for sulfamethoxazole and trimethoprim in 15% w/v hydroxypropyl-beta-cyclodextrin were 910 h and 609 h respectively, 11.8 and 3.4 times greater than in solutions without hydroxypropyl-beta-cyclodextrin. Using a Lineweaver-Burk equation, the half-lives for sulfamethoxazole and trimethoprim outside the complex in a solution containing 15% w/v hydroxypropyl-beta-cyclodextrin were estimated at 77 h and 193 h respectively, whereas inside the complex the half-lives were estimated at 850 h and 821 h. In terms of relative increases in stability under oxidation stress the half-lives for sulfamethoxazole and trimethoprim inside the complex were 11.0 times and 4.2 times greater than their half-lives outside the complex. In conclusion, chemical stability of sulfamethoxazole and trimethoprim in co-trimoxazole aqueous solutions under oxidation stress at 50 +/- 2 degrees C can be increased using hydroxypropyl-beta-cyclodextrin as a molecular inclusion excipient.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号