首页 | 本学科首页   官方微博 | 高级检索  
检索        


In vitro metabolism of quazepam in human liver and intestine and assessment of drug interactions
Authors:Miura M  Ohkubo T
Institution:Department of Pharmacy, Akita University Hospital, Akita 010-8543, Japan.
Abstract:The study was carried out to identify and characterize kinetically the cytochrome P450 (CYP) enzymes responsible for the major metabolite formation of quazepam. In in vitro studies using human liver and intestinal microsomes and cDNA-expressed human CYP and FMO isoenzymes, quazepam was rapidly metabolized mainly by CYP3A4 and to a minor extent by CYP2C9, CYP2C19 and FMO1 to 2-oxoquazepam (OQ), which was then further biotransformed to N-desalkyl-2-oxoquazepam (DOQ) and to 3-hydroxy-2-oxoquazepam (HOQ) mainly by CYP3A4 and CYP2C9. CYP3A4 is the enzyme predominantly responsible for all the metabolic pathways of quazepam. Itraconazole inhibited the formation of OQ from quazepam, HOQ from OQ and DOQ from OQ in human liver microsomes with Ki values of 8.40, 0.08 and 0.39 microM, respectively. However, the Ki for OQ formation was greater than the peak plasma itraconazole concentration following a clinically relevant 200-mg oral dose to healthy volunteers. In addition, CYP2C9 and CYP2C19 inhibitors failed to inhibit OQ formation from quazepam. In conclusion, clinically relevant drug interaction with CYP inhibitors seem unlikely for the major metabolic pathway of quazepam to OQ.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号