首页 | 本学科首页   官方微博 | 高级检索  
     


Artificial Intelligence for Automatic Measurement of Left Ventricular Strain in Echocardiography
Affiliation:1. Department of Medicine, Hospital of Southern Norway, Kristiansand, Norway;2. Faculty of Medicine, University of Oslo, Oslo, Norway;3. Centre for Innovative Ultrasound Solutions and Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway;4. Department of Medicine, Hospital of Southern Norway, Arendal, Norway;5. Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway;6. Clinic of Cardiology, St. Olavs Hospital, Trondheim, Norway
Abstract:ObjectivesThis study sought to examine if fully automated measurements of global longitudinal strain (GLS) using a novel motion estimation technology based on deep learning and artificial intelligence (AI) are feasible and comparable with a conventional speckle-tracking application.BackgroundGLS is an important parameter when evaluating left ventricular function. However, analyses of GLS are time consuming and demand expertise, and thus are underused in clinical practice.MethodsIn this study, 200 patients with a wide range of left ventricle (LV) function were included. Three standard apical cine-loops were analyzed using the AI pipeline. The AI method measured GLS and was compared with a commercially available semiautomatic speckle-tracking software (EchoPAC v202, GE Healthcare.ResultsThe AI method succeeded to both correctly classify all 3 standard apical views and perform timing of cardiac events in 89% of patients. Furthermore, the method successfully performed automatic segmentation, motion estimates, and measurements of GLS in all examinations, across different cardiac pathologies and throughout the spectrum of LV function. GLS was −12.0 ± 4.1% for the AI method and −13.5 ± 5.3% for the reference method. Bias was −1.4 ± 0.3% (95% limits of agreement: 2.3 to −5.1), which is comparable with intervendor studies. The AI method eliminated measurement variability and a complete GLS analysis was processed within 15 s.ConclusionsThrough the range of LV function this novel AI method succeeds, without any operator input, to automatically identify the 3 standard apical views, perform timing of cardiac events, trace the myocardium, perform motion estimation, and measure GLS. Fully automated measurements based on AI could facilitate the clinical implementation of GLS.
Keywords:artificial intelligence  artificial neural networks  deep learning  echocardiography  global longitudinal strain  machine learning  2D"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0045"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  two-dimensional  AI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0055"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  artificial intelligence  ANN"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0065"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  artificial neural network  ASE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0075"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  American Society of Echocardiography  B-A"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0085"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Bland-Altman  EACVI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0095"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  European Association of Cardiovascular Imaging  ECG"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0105"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  electrocardiogram  ED"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0115"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  end diastole  GLS"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0125"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  global longitudinal strain  LOA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0135"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  limits of agreement  LV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0145"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  left ventricle  LVEF"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0155"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  left ventricular ejection fraction  ROI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0165"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  region of interest
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号