Low-temperature modification of the inhibitory effects of volatile anesthetics on airway smooth muscle contraction in dogs |
| |
Authors: | Yamakage M Tsujiguchi N Hattori J Kamada Y Namiki A |
| |
Affiliation: | Department of Anesthesiology, Sapporo Medical University School of Medicine, Japan. yamakage@sapmed.ac.jp |
| |
Abstract: | BACKGROUND: Because exposure to low temperature can modify the effect of volatile anesthetics on airway smooth muscle contraction, this study was conducted to investigate low-temperature modifications of the inhibitory effects of isoflurane and sevoflurane on canine tracheal smooth muscle tone by simultaneously measuring the muscle tension and intracellular concentration of Ca2+ ([Ca2+]i) and by measuring voltage-dependent Ca2+ channel activity. METHODS: [Ca2+]i was monitored by the 500-nm light emission ratio of preloaded fura-2, a Ca2+ indicator. Isometric tension was measured simultaneously. Whole cell patch clamp recording techniques were used to observe voltage-dependent Ca2+ channel activity in dispersed muscle cells. Isoflurane (0-3.0%) or sevoflurane (0-3%) was introduced to a bath solution at various temperatures (37, 34, or 31 degrees C). RESULTS: Low temperature (34 or 31 degrees C) reduced high-K+-induced (72.7 mm) muscle contraction and increased [Ca2+]i, but it enhanced carbachol-induced (1 microm) muscle contraction with a decrease in [Ca2+]i. The volatile anesthetics tested showed significant inhibition of both high-K+-induced and carbachol-induced airway smooth muscle contraction, with a concomitant decrease in [Ca2+]i. The inhibition of the carbachol-induced muscle contraction by volatile anesthetics was abolished partially by exposure to low temperature. Volatile anesthetics and low-temperature exposure significantly inhibited voltage-dependent Ca2+ channel activity of the smooth muscle. CONCLUSIONS: Exposure of airway smooth muscle to low temperature leads to an increase in agonist-induced muscle contractility, with a decrease in [Ca2+]i. The inhibition of voltage-dependent Ca2+ channel activity by exposure to low temperature and by volatile anesthetics cam be attributed, at least in part, to the decrease in [Ca2+]i. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|