首页 | 本学科首页   官方微博 | 高级检索  
检索        


Mycobacterium tuberculosis diverts alpha interferon-induced monocyte differentiation from dendritic cells into immunoprivileged macrophage-like host cells
Authors:Mariotti Sabrina  Teloni Raffaela  Iona Elisabetta  Fattorini Lanfranco  Romagnoli Giulia  Gagliardi Maria Cristina  Orefici Graziella  Nisini Roberto
Institution:Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy.
Abstract:Dendritic cells (DCs) are critical for initiating a pathogen-specific T-cell response. During chronic infections the pool of tissue DCs must be renewed by recruitment of both circulating DC progenitors and in loco differentiating monocytes. However, the interaction of monocytes with pathogens could affect their differentiation. Mycobacterium tuberculosis has been shown to variably interfere with the generation and function of antigen-presenting cells (APCs). In this study we found that when alpha interferon (IFN-alpha) is used as an inductor of monocyte differentiation, M. tuberculosis inhibits the generation of DCs, forcing the generation of immunoprivileged macrophage-like cells instead. Cells derived from M. tuberculosis-infected monocyte-derived macrophages (M. tuberculosis-infected MoMphi) retained CD14 without acquiring CD1 molecules and partially expressed B7.2 but did not up-regulate B7.1 and major histocompatibility complex (MHC) class I and II molecules. They synthesized tumor necrosis factor alpha and interleukin-10 (IL-10) but not IL-12. They also showed a reduced ability to induce proliferation and functional polarization of allogeneic T lymphocytes. Thus, in the presence of IFN-alpha, M. tuberculosis may hamper the renewal of potent APCs, such as DCs, generating a safe habitat for intracellular growth. M. tuberculosis-infected MoMphi, in fact, showed reduced expression of both signal 1 (CD1, MHC classes I and II) and signal 2 (B7.1 and B7.2), which are essential for mycobacterium-specific T-lymphocyte priming and/or activation. These data further suggest that M. tuberculosis has the ability to specifically interfere with monocyte differentiation. This ability may represent an effective M. tuberculosis strategy for eluding immune surveillance and persisting in the host.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号