首页 | 本学科首页   官方微博 | 高级检索  
检索        


Predictors of distress in female breast cancer survivors: a systematic review
Authors:Ania Syrowatka  Aude Motulsky  Siyana Kurteva  James A Hanley  William G Dixon  Ari N Meguerditchian  Robyn Tamblyn
Institution:1.Department of Medicine,University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute,Pittsburgh,USA;2.School of Medicine,Tsinghua University,Beijing,China;3.Department of Biostatistics,University of Pittsburgh and University of Pittsburgh Cancer Institute,Pittsburgh,USA;4.Department of Computational Biology,University of Pittsburgh and University of Pittsburgh Cancer Institute,Pittsburgh,USA;5.Department of Pharmacology and Chemical Biology,University of Pittsburgh,Pittsburgh,USA
Abstract:

Purpose

Breast cancers have a poorer prognosis if estrogen receptor expression was lost during recurrence. It is unclear whether this conversion is cell autonomous or whether it can be promoted by the microenvironment during cancer dormancy. We explored the ability of marrow-derived stromal cell lines to arrest co-cultured breast cancer cells and suppress estrogen receptor alpha (ER) expression during arrest, facilitating the emergence of estrogen-independent breast cancer clones.

Methods

Cancer cell growth, ER protein, microRNA, and mRNA levels were measured in breast cancer cell lines exposed to conditioned medium from marrow stromal lines in the presence and absence of estrogen and of signaling pathway modulators.

Results

We demonstrate that paracrine signaling from the stromal cell line HS5 downregulated ER in T47D and MCF7 breast cancer cells. This occurred at the mRNA level and also through decreased ER protein stability. Additionally, conditioned medium (CM) from HS5 arrested the breast cancer cells in G0/G1 in part through interleukin-1 (IL1) and inhibited cancer cell growth despite the activation of proliferative pathways (Erk and AKT) by the CM. Similar findings were observed for CM from the hFOB 1.19 osteoblastic cell line but not from two other fibroblastic marrow lines, HS27A and KM101. HS5-CM inhibition of MCF7 proliferation could not be restored by exogenous ER, but was restored by the IL1-antagonist IL1RA. In the presence of IL1RA, HS5-CM activation of AKT and Erk enabled the outgrowth of breast cancer cells with suppressed ER that were fulvestrant-resistant and estrogen-independent.

Conclusions

We conclude that marrow-derived stromal cells can destabilize estrogen receptor protein to convert the ER status of growth-arrested ER+ breast cancer cell lines. The balance between stromal pro- and anti-proliferative signals controlled the switch from a dormant phenotype to estrogen-independent cancer cell growth.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号