首页 | 本学科首页   官方微博 | 高级检索  
     


Microtubule disruption modulates Ca(2+) signaling in rat cardiac myocytes
Authors:Gómez A M  Kerfant B G  Vassort G
Affiliation:Physiopathologie Cardiovasculaire, INSERM U-390, Montpellier, France.
Abstract:Microtubules have been shown to alter contraction in cardiac myocytes through changes in cellular stiffness. However, an effect on excitation-contraction coupling has not been examined. Here we analyze the effects of microtubule disruption by 1 micromol/L colchicine on calcium currents (I(Ca)) and [Ca(2+)](i) transients in rat ventricular myocytes. I(Ca) was studied using the whole-cell patch-clamp technique. Colchicine treatment increased I(Ca) density (peak values, -4.6+/-0.4 and -9.1+/-1.3 pA/pF in 11 control and 12 colchicine-treated myocytes, respectively; P<0.05). I(Ca) inactivation was well fitted by a biexponential function. The slow component of inactivation was unchanged, whereas the fast component was accelerated after colchicine treatment (at -10 mV, 11.8+/-1.0 versus 6.7+/-1.0 ms in control versus colchicine-treated cells; P<0.005). [Ca(2+)](i) transients were analyzed by fluo-3 epifluorescence simultaneously with I(Ca). Peak [Ca(2+)](i) transients were significantly increased in cardiac myocytes treated with colchicine. The values of F/F(0) at 0 mV were 1.1+/-0.02 in 9 control cells and 1.4+/-0.1 in 11 colchicine-treated cells (P<0.05). beta-Adrenergic stimulation with 1 micromol/L isoproterenol increased both I(Ca) and [Ca(2+)](i) transient in control cells. However, no significant change was induced by isoproterenol on colchicine-treated cells. Colchicine and isoproterenol effects were similar and not additive. Inhibition of adenylyl cyclase by 200 micromol/L 2'-deoxyadenosine 3'-monophosphate blunted the colchicine effect. We suggest that beta-adrenergic stimulation and microtubule disruption share a common pathway to enhance I(Ca) and [Ca(2+)](i) transient.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号