首页 | 本学科首页   官方微博 | 高级检索  
     


Prediction of dissolution-absorption relationships from a dissolution/Caco-2 system
Authors:Ginski M J  Polli J E
Affiliation:School of Pharmacy, University of Maryland, Baltimore 21201, USA.
Abstract:While the analysis of in vitro dissolution-in vivo absorption relationships from oral solid dosage forms provides biopharmaceutical insight and regulatory benefit, no well developed method exists to predict dissolution-absorption relationships a priori to human studies. The objective was to develop an integrated dissolution/Caco-2 system to predict dissolution-absorption relationships, and hence the contributions of dissolution and intestinal permeation to overall drug absorption for fast and slow formulations of piroxicam, metoprolol, and ranitidine. Dissolution studies were conducted on fast and slow dissolving immediate-release formulations of piroxicam, metoprolol tartrate, and ranitidine HCl. Dissolution samples were treated with concentrated buffers to render them suitable (i.e., isotonic and neutral pH) for Caco-2 monolayer permeation studies. The dissolution/Caco-2 system yielded a predicted dissolution-absorption relationship for each formulation which matched the observed relationship from clinical studies. The dissolution/Caco-2 system's prediction of dissolution or permeation rate-limited absorption also agreed with the clinical results. For example, the dissolution/Caco-2 system successfully predicted the slow piroxicam formulation to be dissolution rate-limited, and the fast piroxicam formulation to be permeation rate-limited. Moreover, the system predicted this change from dissolution rate-limited absorption for slow piroxicam to permeation rate-limited absorption for fast piroxicam, in spite of piroxicam's high permeability and low solubility. The dissolution/Caco-2 system may prove to be a valuable tool in formulation development. Broader evaluation of such a system is warranted.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号