首页 | 本学科首页   官方微博 | 高级检索  
检索        


Temporal changes in systemic and local expression of bone turnover markers during six months of sclerostin antibody administration to ovariectomized rats
Institution:1. Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical University, Zhejiang, China;2. Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China;3. Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA;4. Liaoning University of Traditional Chinese Medicine, Liaoning, China;5. Amgen Inc., Thousand Oaks, CA, USA;6. Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China;1. Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven, and Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium;2. Laboratory of Pathophysiology, Department of Biomedical Sciences, Antwerp University, Wilrijk, Belgium;3. Department of Cardiology, University Hospital RWTH Aachen, Aachen, Germany
Abstract:Sclerostin (Scl) is an osteocyte protein that decreases bone formation, and its inhibition by neutralizing antibodies (Scl-Ab) increases bone formation, mass and strength. We investigated the effects of Scl-Ab in mature ovariectomized (OVX) rats with a mechanistic focus on longer-term responses of osteoclasts, osteoblasts and osteocytes. Four-month-old Sprague–Dawley rats had OVX or sham surgery. Two months later, sham controls received sc vehicle while OVX rats received vehicle (OVX-Veh) or Scl-Ab (25 mg/kg) once weekly for 6 or 26 weeks followed by necropsy (n = 12/group). Terminal blood was collected for biochemistry, non-adherent marrow cells were harvested from femurs for ex vivo osteoclast formation assays, and vertebrae and tibiae were collected for dynamic histomorphometry and mRNA analyses. Scl-Ab treatment led to progressively thicker but fewer trabeculae in the vertebra, leading to increased trabecular bone volume and reduced trabecular surfaces. Scl-Ab also increased cortical bone volume in the tibia, via early periosteal expansion and progressive endocortical contraction. Scl-Ab significantly reduced parameters of bone resorption at week 6 relative to OVX-Veh controls, including reduced serum TRACP-5b, reduced capacity of marrow cells to form osteoclasts ex vivo, and > 80% reductions in vertebral trabecular and tibial endocortical eroded surfaces. At week 26, serum TRACP-5b and ex vivo osteoclast formation were no longer reduced in the Scl-Ab group, but eroded surfaces remained > 80% lower than in OVX-Veh controls without evidence for altered skeletal mRNA expression of opg or rankl. Scl-Ab significantly increased parameters of bone formation at week 6 relative to OVX-Veh controls, including increases in serum P1NP and osteocalcin, and increased trabecular, endocortical and periosteal bone formation rates (BFRs). At week 26, surface-referent trabecular BFR remained significantly increased in the Scl-Ab group versus OVX-Veh controls, but after adjusting for a reduced extent of trabecular surfaces, overall (referent-independent) trabecular BFR was no longer significantly elevated. Similarly, serum P1NP and osteocalcin were no longer significantly increased in the Scl-Ab group at week 26. Tibial endocortical and periosteal BFR were increased at week 6 in the Scl-Ab group versus OVX-Veh controls, while at week 26 only endocortical BFR remained increased. The Scl-Ab group exhibited significant increments in skeletal mRNA expression of several osteocyte genes, with sost showing the greatest induction in both the tibia and vertebra. We propose that Scl-Ab administration, and/or the gains in bone volume that result, may have increased osteocytic expression of Scl as a possible means of regulating gains in bone mass.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号