Early hydrogen-bonding events in the folding reaction of ubiquitin. |
| |
Authors: | M S Briggs and H Roder |
| |
Affiliation: | Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104-6059. |
| |
Abstract: | The formation of hydrogen-bonded structure in the folding reaction of ubiquitin, a small cytoplasmic protein with an extended beta-sheet and an alpha-helix surrounding a pronounced hydrophobic core, has been investigated by hydrogen-deuterium exchange labeling in conjunction with rapid mixing methods and two-dimensional NMR analysis. The time course of protection from exchange has been measured for 26 back-bone amide protons that form stable hydrogen bonds upon refolding and exchange slowly under native conditions. Amide protons in the beta-sheet and the alpha-helix, as well as protons involved in hydrogen bonds at the helix/sheet interface, become 80% protected in an initial 8-ms folding phase, indicating that the two elements of secondary structure form and associate in a common cooperative folding event. Somewhat slower protection rates for residues 59, 61, and 69 provide evidence for the subsequent stabilization of a surface loop. Most probes also exhibit two minor phases with time constants of about 100 ms and 10 s. Only two of the observed residues, Gln-41 and Arg-42, display significant slow folding phases, with amplitudes of 37% and 22%, respectively, which can be attributed to native-like folding intermediates containing cis peptide bonds for Pro-37 and/or Pro-38. Compared with other proteins studied by pulse labeling, including cytochrome c, ribonuclease, and barnase, the initial formation of hydrogen-bonded structure in ubiquitin occurs at a more rapid rate and slow-folding species are less prominent. |
| |
Keywords: | |
|
|