首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets
Authors:Kushida A  Yamato M  Konno C  Kikuchi A  Sakurai Y  Okano T
Affiliation:Institute of Biomedical Engineering, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.
Abstract:We have developed a temperature-responsive culture dish grafted with a poly(N-isopropylacrylamide) (PIPAAm). Various types of cells adhere, spread, and proliferate on the grafted dishes in the presence of serum at 37 degrees C. By reducing only temperature, these cells can be harvested noninvasively from the dishes according to rapid hydration of the grafted polymer. Because the harvest does not need enzymatic digestion, differentiated cell phenotypes are retained. In the present study, a renal epithelial cell line, Madin-Darby canine kidney (MDCK) cell, was cultured on the dishes, and cell behavior was examined. MDCK cells showed differentiated phenotypes such as dome formation during long-term culture, similar to on ungrafted dishes. After 1-week culture at 37 degrees C, trypsin digestion disrupted cell-cell junctions but failed to liberate cells from both ungrafted and grafted dishes. However, short-term incubation at 20 degrees C released confluent MDCK cells as a single contiguous cell sheet only from the polymer-grafted dishes because of selective disruption of the cell-surface binding. Immunocytochemistry with anti-beta-catenin antibody revealed that functional cell-cell junctions were organized even in the recovered cell sheets. Intriguingly, incubation time at 20 degrees C required for cell sheet detachment gradually shortened during long-term culture before reducing temperature. The acceleration of cell detachment was correlated to the decrease of a single cell area by means of cell contractile force. These findings suggest that cell sheet detachment from PIPAAm-grafted dishes should be accomplished by both PIPAAm hydration and cellular metabolic activity such as cell contraction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号