首页 | 本学科首页   官方微博 | 高级检索  
检索        


Noise-induced transition to bursting in responses of paddlefish electroreceptor afferents
Authors:Neiman Alexander B  Yakusheva Tatyana A  Russell David F
Institution:Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA. neimana@ohio.edu
Abstract:The response properties of ampullary electroreceptors of paddlefish, Polyodon spathula, were studied in vivo, as single-unit afferent responses to external electrical stimulation with varied intensities of several types of noise waveforms, all Gaussian and zero-mean. They included broadband white noise, Ornstein-Uhlenbeck noise, low- or high-frequency band-limited noise, or natural noise recorded from swarms of Daphnia zooplankton prey, or from individual prey. Normally the afferents fire spontaneously in a tonic manner, which is actually quasiperiodic due to embedded oscillators. 1) Weak noise stimuli increased the variability of afferent firing, but it remained tonic. 2) In contrast, stimulation with less-weak broadband noise led to a qualitative change of the firing patterns, to parabolic bursting, even though the mean firing rate was scarcely affected. 3) The transition to afferent bursting was marked by the development of two well-separated timescales: the fast frequency of spiking inside bursts at
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号