首页 | 本学科首页   官方微博 | 高级检索  
检索        


Drug metabolism in cirrhosis. Selective changes in cytochrome P-450 isozymes in the choline-deficient rat model
Authors:M Murray  L Zaluzny  G C Farrell
Abstract:The effect of a choline-deficient diet on microsomal cytochrome P-450 and mixed-function oxidase (MFO) activity was investigated in relation to the development of nutritional cirrhosis. In rats that received the choline-deficient diet for 28 weeks cirrhosis was evident macroscopically and histologically; control rats that received an identical diet supplemented with choline had normal livers. Microsomal cytochrome P-450 and cytochrome b5 were reduced in cirrhotic liver to 50% of control levels. Three MFO activities (ethylmorphine N-demethylase, aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase) were also reduced to 40-70% of control levels. However, the turnover number for the O-deethylation of 7-ethoxycoumarin was not reduced in cirrhotic liver. This finding suggested that certain drug oxidations may be selectively depressed in nutritional cirrhosis. To examine the possibility that selective changes in MFO activity may reflect the suppression of certain cytochrome P-450 isozymes, partially purified fractions of the cytochrome were prepared after solubilisation and hydrophobic affinity chromatography (on n-octylamino-Sepharose 4B) of cirrhotic and control liver microsomes. Analysis of these fractions by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and laser densitometry indicated that a protein band of apparent minimum molecular weight 50.5 kD was primarily affected in cirrhotic rat liver microsomes. Levels of two other bands (apparent minimum molecular weight 48 and 52.5 kD) appeared essentially unaltered. Additional electrophoretic studies, conducted under non-reduced conditions, indicated the haemoprotein nature of protein bands in the 48-55 kD region. These data strongly suggest that cirrhosis produced in rats by a choline-deficient diet is associated with selective decreases in oxidative drug metabolism and individual cytochrome P-450 isozymes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号