首页 | 本学科首页   官方微博 | 高级检索  
检索        


Photocoupling of fibronectin to titanium surfaces influences keratinocyte adhesion, pellicle formation and thrombogenicity.
Authors:Lutz Scheideler  Frank Rupp  Hans P Wendel  Shila Sathe  Jürgen Geis-Gerstorfer
Institution:Department of Prosthodontics, Section Medical Materials and Technology, Center for Dental, Oral and Maxillofacial Medicine, University of Tübingen, Germany. lutz.scheideler@med.uni-tuebingen.de
Abstract:OBJECTIVES: Coating of implant surfaces with biomolecules can influence basic host responses and enhance subsequent tissue integration. The biological factors have to be immobilized on the implant material. Human fibronectin (Fn) was used as a model protein and covalently coupled to titanium (Ti) surfaces via silanization and an anthraquinone linker. The impact on several aspects of initial host/biomaterial interactions (keratinocyte adhesion, platelet interactions and pellicle formation) was studied. METHODS: Coupling efficiency was characterized by immunological techniques. The effects of coupled Fn on initial host/biomaterial interactions were assessed. Cell adhesion and spreading were investigated by fluorescent staining, pellicle formation by an acoustic sensor system (quartz crystal microbalance with dissipation, QCM-D), and platelet adhesion as one parameter mediating the inflammatory response by scanning electron microscopy (SEM) and immunological assays. RESULTS: Coupling efficiency was related to irradiation time used for photochemical coupling of the UV-activated anthraquinone to the silanized Ti surface. With an optimized protocol, the amount of Fn coupled to the surface could be almost doubled compared to standard dip-coating methods. On the anthraquinone-coupled Fn coatings, cell adhesion and spreading of human keratinocytes was significantly enhanced. Online detection of pellicle formation revealed strong reversibility of saliva protein adhesion on Fn coated surfaces compared to the pure Ti surface. Furthermore, the Fn coated Ti showed a low thrombogenicity. SIGNIFICANCE: This study suggests that anthraquinone-coupled biological coatings may be useful for biofunctionalization of Ti dental implants by enhancement of soft tissue re-integration (restoration of the epithelial seal) combined with diminished pellicle formation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号