首页 | 本学科首页   官方微博 | 高级检索  
     


The Size of Sonoporation Pores on the Cell Membrane
Authors:Yun Zhou   Ronald E. Kumon   Jianmin Cui  Cheri X. Deng  
Affiliation:Department of Biomedical Engineering, Washington University at St. Louis, MO, USA;*Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
Abstract:Sonoporation uses ultrasound (US) to generate transient nonselective pores on the cell membrane and has been exploited as a nonviral intracellular drug and gene delivery strategy. The pore size determines the size of agents that can be delivered into the cytoplasm using the technique. However, measurements of the dynamic, submicron-scale pores have not been readily available. Electron microscopy or atomic force microscopy has been used to gauge pore size but such techniques are intrinsically limited to post-US measurements that may not accurately reveal the relevant information. As previously demonstrated, changes of the transmembrane current (TMC) of a single cell under voltage clamp can be used for monitoring sonoporation in real-time. Because the TMC is related to the diffusion of ions through the pores on the membrane, it can potentially provide information of the pore size generated in sonoporation. Using Xenopus laevis oocytes as the model system, the TMC of single cells under voltage clamp was measured in real-time to assess formation of pores on the membrane in sonoporation. The cells were exposed to US (0.2 s, 0.3 MPa, 1.075 MHz) in the presence of Definity™ microbubbles. Experiments were designed to obtain the TMC corresponding to a single pore on the membrane. The size of the pores was estimated from an electro-diffusion model that relates the TMC with pore size from the ion transport through the pores on the membrane. The mean radius of single pores was determined to be 110 nm with standard deviation of 40 nm. This study reports the first results of pore size from the TMC measured using the voltage clamp technique. (E-mail: cxdeng@umich.edu)
Keywords:Sonoporation   Ultrasound   Nonselective pores   Voltage clamp   Xenopus laevis oocyte   Microbubbles   Definity   Electro-diffusion model   Drug delivery   Gene delivery
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号