首页 | 本学科首页   官方微博 | 高级检索  
检索        


Dopamine release from transplanted neural stem cells in Parkinsonian rat striatum in vivo
Authors:Xinjiang Kang  Huadong Xu  Sasa Teng  Xiaoyu Zhang  Zijun Deng  Li Zhou  Panli Zuo  Bing Liu  Bin Liu  Qihui Wu  Li Wang  Meiqin Hu  Haiqiang Dou  Wei Liu  Feipeng Zhu  Qing Li  Shu Guo  Jingli Gu  Qian Lei  Jing Lü  Yu Mu  Mu Jin  Shirong Wang  Wei Jiang  Kun Liu  Changhe Wang  Wenlin Li  Kang Zhang  Zhuan Zhou
Abstract:Embryonic stem cell-based therapies exhibit great potential for the treatment of Parkinson’s disease (PD) because they can significantly rescue PD-like behaviors. However, whether the transplanted cells themselves release dopamine in vivo remains elusive. We and others have recently induced human embryonic stem cells into primitive neural stem cells (pNSCs) that are self-renewable for massive/transplantable production and can efficiently differentiate into dopamine-like neurons (pNSC–DAn) in culture. Here, we showed that after the striatal transplantation of pNSC–DAn, (i) pNSC–DAn retained tyrosine hydroxylase expression and reduced PD-like asymmetric rotation; (ii) depolarization-evoked dopamine release and reuptake were significantly rescued in the striatum both in vitro (brain slices) and in vivo, as determined jointly by microdialysis-based HPLC and electrochemical carbon fiber electrodes; and (iii) the rescued dopamine was released directly from the grafted pNSC–DAn (and not from injured original cells). Thus, pNSC–DAn grafts release and reuptake dopamine in the striatum in vivo and alleviate PD symptoms in rats, providing proof-of-concept for human clinical translation.Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder characterized by the specific loss of dopaminergic neurons in the substantia nigra pars compacta and their projecting axons, resulting in loss of dopamine (DA) release in the striatum (1). During the last two decades, cell-replacement therapy has proven, at least experimentally, to be a potential treatment for PD patients (27) and in animal models (815). The basic principle of cell therapy is to restore the DA release by transplanting new DA-like cells. Until recently, obtaining enough transplantable cells was a major bottleneck in the practicability of cell therapy for PD. One possible source is embryonic stem cells (ESCs), which can develop infinitely into self-renewable pluripotent cells with the potential to generate any type of cell, including DA neurons (DAns) (16, 17).Recently, several groups including us have introduced rapid and efficient ways to generate primitive neural stem cells (pNSCs) from human ESCs using small-molecule inhibitors under chemically defined conditions (12, 18, 19). These cells are nonpolarized neuroepithelia and retain plasticity upon treatment with neuronal developmental morphogens. Importantly, pNSCs differentiate into DAns (pNSC–DAn) with high efficiency (∼65%) after patterning by sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF8) in vitro, providing an immediate and renewable source of DAns for PD treatment. Importantly, the striatal transplantation of human ESC-derived DA-like neurons, including pNSC–DAn, are able to relieve the motor defects in a PD rat model (1113, 15, 1923). Before attempting clinical translation of pNSC–DAn, however, there are two fundamental open questions. (i) Can pNSC–DAn functionally restore the striatal DA levels in vivo? (ii) What cells release the restored DA, pNSC–DAn themselves or resident neurons/cells repaired by the transplants?Regarding question 1, a recent study using nafion-coated carbon fiber electrodes (CFEs) reported that the amperometric current is rescued in vivo by ESC (pNSC–DAn-like) therapy (19). Both norepinephrine (NE) and serotonin are present in the striatum (24, 25). However, CFE amperometry/chronoamperometry alone cannot distinguish DA from other monoamines in vivo, such as NE and serotonin (Fig. S1) (see also refs. 2628). Considering that the compounds released from grafted ESC-derived cells are unknown, the work of Kirkeby et al. was unable to determine whether DA or other monoamines are responsible for the restored amperometric signal. Thus, the key question of whether pNSC–DAn can rescue DA release needs to be reexamined for the identity of the restored amperometric signal in vivo.Regarding question 2, many studies have proposed that DA is probably released from the grafted cells (8, 12, 13, 20), whereas others have proposed that the grafted stem cells might restore striatal DA levels by rescuing injured original cells (29, 30). Thus, whether the grafted cells are actually capable of synthesizing and releasing DA in vivo must be investigated to determine the future cellular targets (residual cells versus pNSC–DAn) of treatment.To address these two mechanistic questions, advanced in vivo methods of DA identification and DA recording at high spatiotemporal resolution are required. Currently, microdialysis-based HPLC (HPLC) (3133) and CFE amperometric recordings (34, 35) have been used independently by different laboratories to assess evoked DA release from the striatum in vivo. The major advantage of microdialysis-based HPLC is to identify the substances secreted in the cell-grafted striatum (33), but its spatiotemporal resolution is too low to distinguish the DA release site (residual cells or pNSC–DAn). In contrast, the major advantage of CFE-based amperometry is its very high temporal (ms) and spatial (μm) resolution, making it possible to distinguish the DA release site (residual cells or pNSC–DAn) in cultured cells, brain slices, and in vivo (3439), but it is unable to distinguish between low-level endogenous oxidizable substances (DA versus serotonin and NE) in vivo.In the present study, we developed a challenging experimental paradigm of combining the two in vivo methods, microdialysis-based HPLC and CFE amperometry, to identify the evoked substance as DA and its release site as pNSC–DAn in the striatum of PD rats.
Keywords:dopamine  Parkinson''s disease  striatum in vivo  neural stem cells  CFE
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号