首页 | 本学科首页   官方微博 | 高级检索  
检索        


Development of an empirical model to aid in designing airborne infection isolation rooms
Authors:Hayden Charles S  Earnest G Scott  Jensen Paul A
Institution:U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226, USA. chayden@cdc.gov
Abstract:Airborne infection isolation rooms (AIIRs) house patients with tuberculosis, severe acute respiratory syndrome (SARS), and many other airborne infectious diseases. Currently, facility engineers and designers of heating, ventilation, and air-conditioning (HVAC) systems have few analytical tools to estimate a room's leakage area and establish an appropriate flow differential (DeltaQ) in hospitals, shelters, and other facilities where communicable diseases are present. An accurate estimate of leakage area and selection of DeltaQ is essential for ensuring that there is negative pressure (i.e., pressure differential DeltaP]) between an AIIR and adjoining areas. National Institute for Occupational Safety and Health (NIOSH) researchers evaluated the relationship between DeltaQ and DeltaP in 67 AIIRs across the United States and in simulated AIIR. Data gathered in the simulated AIIR was used to develop an empirical model describing the relationship between DeltaQ, DeltaP, and leakage area. Data collected in health care facilities showed that the model accurately predicted the leakage area 44 of 48 times. Statistical analysis of the model and experimental validation showed that the model effectively estimated the actual leakage area from -39% to +22% with 90% confidence. The NIOSH model is an effective, cost-cutting tool that can be used by HVAC engineers and designers to estimate leakage area and select an appropriate DeltaQ in AIIRs to reduce the airborne transmission of disease.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号