首页 | 本学科首页   官方微博 | 高级检索  
检索        


Enhancing hepatocyte adhesion by pulsed plasma deposition and polyethylene glycol coupling
Authors:Carlisle E S  Mariappan M R  Nelson K D  Thomes B E  Timmons R B  Constantinescu A  Eberhart R C  Bankey P E
Institution:Joint Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA.
Abstract:Decreased hepatocyte adhesion to polymeric constructs limits the function of tissue engineered hepatic assist devices. We grafted adhesion peptides (RGD and YIGSR) to polycaprolactone (PCL) and poly-L-lactic acid (PLLA) in order to mimic the in vivo extracellular matrix and thus enhance hepatocyte adhesion. Peptide grafting was done by a novel technique in which polyethylene glycol (PEG)-adhesion peptide was linked to allyl-amine coated on the surface of PCL and PLLA by pulsed plasma deposition (PPD). Peptide grafting density, quantified by radio-iodinated tyrosine in YIGSR, was 158 fmol/cm(2) on PLLA and 425 fmol/cm(2) on PCL surfaces. The adhesion of hepatocytes was determined by plating 250,000 hepatocytes/well (test substrates were coated on 12 well plates) and quantifying the percentage of adhered cells after 6 h by MTT assay. Adhesion on PCL surfaces was significantly enhanced (p < 0.05) by both YIGSR (percentage of adhered cells = 53 +/- 7%) and RGD (53 +/- 12%) when compared to control surfaces (31 +/- 8%). Hepatocyte adhesion on PLLA was significantly (p < 0.05) enhanced on PLLA-PEG-RGD surfaces (76 +/- 14%) compared to control surfaces (42 +/- 19%) and more (68 +/- 25%) but not statistically significant (p = 0.15) on PLLA-PEG-YIGSR surfaces compared to control surfaces. These results indicate that hepatocyte adhesion to PCL and PLLA based polymeric surfaces can be enhanced by a novel adhesion peptide grafting technique using pulsed plasma deposition and PEG cross-linking.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号