首页 | 本学科首页   官方微博 | 高级检索  
检索        


Salivary pellicles equalise surfaces’ charges and modulate the virulence of Candida albicans biofilm
Institution:1. Periodontology and Prosthodontics Department, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil;2. Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, Cardiff, Wales, UK;3. Department of Dentistry, School of Dentistry, State University of Paraíba (UEPB), Campina Grande, PB, Brazil
Abstract:IntroductionNumerous environmental factors influence the pathogenesis of Candida biofilms and an understanding of these is necessary for appropriate clinical management.AimsTo investigate the role of material type, pellicle and stage of biofilm development on the viability, bioactivity, virulence and structure of C. albicans biofilms.MethodsThe surface roughness (SR) and surface free energy (SFE) of acrylic and titanium discs was measured. Pellicles of saliva, or saliva supplemented with plasma, were formed on acrylic and titanium discs. Candida albicans biofilms were then generated for 1.5 h, 24 h, 48 h and 72 h. The cell viability in biofilms was analysed by culture, whilst DNA concentration and the expression of Candida virulence genes (ALS1, ALS3 and HWP1) were evaluated using qPCR. Biofilm metabolic activity was determined using XTT reduction assay, and biofilm structure analysed by Scanning Electron Microscopy (SEM).ResultsWhilst the SR of acrylic and titanium did not significantly differ, the saliva with plasma pellicle increased significantly the total SFE of both surface. The number of viable microorganisms and DNA concentration increased with biofilm development, not differing within materials and pellicles. Biofilms developed on saliva with plasma pellicle surfaces had significantly higher activity after 24 h and this was accompanied with higher expression of virulence genes at all periods.ConclusionInduction of C. albicans virulence occurs with the presence of plasma proteins in pellicles, throughout biofilm growth. To mitigate such effects, reduction of increased plasmatic exudate, related to chronic inflammatory response, could aid the management of candidal biofilm-related infections.
Keywords:Biofilms  Gene expression  Virulence  Salivary pellicle
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号