首页 | 本学科首页   官方微博 | 高级检索  
检索        


Correlation of hippocampal glucose oxidation capacity and interictal FDG-PET in temporal lobe epilepsy
Authors:Vielhaber Stefan  Von Oertzen Joachim H  Kudin Alexei F  Schoenfeld Ariel  Menzel Christian  Biersack Hans-Juergen  Kral Thomas  Elger Christian E  Kunz Wolfram S
Institution:Department of Neurology II, University of Magdeburg Medical Center, Magdeburg, Germany. vielhaber@medizin.uni-magdeburg.de
Abstract:PURPOSE: Interictal 18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) demonstrates temporal hypometabolism in the epileptogenic zone of 60-90% of patients with temporal lobe epilepsy. The pathophysiology of this finding is still unknown. Several studies failed to show a correlation between hippocampal FDG-PET hypometabolism and neuronal cell loss. Because FDG is metabolized by hexokinase bound to the outer mitochondrial membrane, we correlated the glucose-oxidation capacity of hippocampal subfields obtained after surgical resection with the corresponding hippocampal presurgical FDG-PET activity. METHODS: In 16 patients with electrophysiologically confirmed temporal lobe epilepsy, we used high-resolution respirometry to determine the basal and maximal glucose-oxidation rates in 400-microm-thick hippocampal subfields obtained after dissection of human hippocampal slices into the CA1 and CA3 pyramidal subfields and the dentate gyrus. RESULTS: We observed a correlation of the FDG-PET activity with the maximal glucose-oxidation rate of the CA3 pyramidal subfields (rp = 0.7, p = 0.003) but not for the regions CA1 and dentate gyrus. In accordance with previous studies, no correlation of the FDG-PET to the neuronal cell density of CA1, CA3, and dentate gyrus was found. CONCLUSIONS: The interictal hippocampal FDG-PET hypometabolism in patients with temporal lobe epilepsy is correlated to the glucose-oxidation capacity of the CA3 hippocampal subfield as result of impaired oxidative metabolism.
Keywords:Temporal lobe epilepsy  FDG-PET  Mitochondrial oxidative phosphorylation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号