首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于元学习的小样本核磁共振图像分割方法
作者姓名:陈晓清付忠良姚宇
作者单位:1.中国科学院大学成都计算机应用研究所610000;
基金项目:国家自然科学基金面上项目(61971091);四川省科技计划项目(2022YFS0384)。
摘    要:将深度学习算法应用于核磁共振(MR)图像分割时,必需以大量经标注后图像作为训练集的数据支撑。然而,MR图像的特殊性导致采集大量的图像数据较困难,制作大量的标注数据成本高。为降低MR图像分割对大量标注数据的依赖,本文提出了一种用于小样本MR图像分割的元U型网络(Meta-UNet),能够利用少量的图像标注数据完成MR图像分割任务,并获得良好的分割结果。其具体操作为:通过引入空洞卷积对U型网络(U-Net)进行改进,增加网络模型感受野从而提高模型对不同尺度目标的灵敏度;通过引入注意力机制提高模型对不同尺度目标的适应性;通过引入元学习机制,并采用复合损失函数对模型训练进行良好的监督和有效的引导。本文利用提出的Meta-UNet模型,在不同分割任务上进行训练,然后用训练好的模型在全新的分割任务上进行评估,实现了目标图像的高精度分割。新的分割方法比起常用的无监督医学图像配准分割方法——体素变形网络(VoxelMorph)、数据增强医学图像分割方法——转换学习数据增强模型(DataAug)和基于标签转移的医学图像分割方法——标签转移网络(LT-Net)三种模型平均戴斯相似性系数(DSC)有一定提高...

关 键 词:小样本  核磁共振图像  图像分割  元学习
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号