首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of P-Aminophenyl Dichloroarsine on Reduced High-affinity [3H]Nicotine Binding Sites from Chick Brain: A Covalent,Yet Reversible,Agent for Neuronal Nicotinic Receptors
Authors:Pike Ashley  Loring Ralph H.
Affiliation:Department of Pharmaceutical Sciences, 211 Mugar Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
Abstract:Neuronal nicotinic acetylcholine receptor (nAChR) α-subunits contain a conserved disulphide that is essential for function. Here, we have examined the effects of sulphydryl redox reagents on [3H]nicotine binding to chick brain nAChR immunoisolated with the monoclonal antibody mAb35. The disulphide reducing agent, dithiothreitol (DTT), inhibited [3H]nicotine binding [50% inhibitory concentration (IC50) = 146 μM] but this effect was reversed (93±1.5%) by subsequent reoxidation with 1 mM dithio-bis(nitrobenzoic acid) (DTNB). The trivalent arsenical, p -aminophenyl dichloroarsine (APA), which reacts with pairs of spatially close sulphydryls, was a potent inhibitor of reoxidation by DTNB (IC50= 35 nM). However, application of the 'anti-arsenical', 2,3-dimercaptopropane sulphonic acid (DMPS), restored agonist binding after APA treatment (50% effective concentration = 120 μM). Paradoxically, DMPS was also found to be a potent oxidizing agent of these receptors. Affinity alkylation of reduced nAChRs with bromoacetylcholine (BAC; 100 μM) irreversibly blocked nicotine binding (>90%). We propose (but have not proven) that APA interacts with the cysteines homologous to Cys192–193 in Torpedo AChRs, since APA pretreatment of reduced neuronal receptors protected against irreversible BAC alkylation, as shown by subsequent reversal of DMPS (2 mM; 20 min). This study illustrates the potent and reversible nature of the arsenical's covalent interaction with an isolated nAChR and suggests that modified arsenicals could be useful nAChR probes.
Keywords:agonist nicotinic site    arsenical    redox reagents    immunoisolated receptor    monoclonal antibody
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号