首页 | 本学科首页   官方微博 | 高级检索  
     


Chlamydia muridarum infection elicits a beta interferon response in murine oviduct epithelial cells dependent on interferon regulatory factor 3 and TRIF
Authors:Derbigny Wilbert A  Hong Soon-Cheol  Kerr Micah S  Temkit M'hamed  Johnson Raymond M
Affiliation:Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Abstract:Chlamydia trachomatis is the most common sexually transmitted bacterial infection in the United States. Utilizing cloned murine oviduct epithelial cell lines, we previously identified Toll-like receptor 2 (TLR2) as the principal epithelial pattern recognition receptor (PRR) for infection-triggered release of the acute inflammatory cytokines interleukin-6 and granulocyte-macrophage colony-stimulating factor. The infected oviduct epithelial cell lines also secreted the immunomodulatory cytokine beta interferon (IFN-beta) in a largely MyD88-independent manner. Although TLR3 was the only IFN-beta production-capable TLR expressed by the oviduct cell lines, we were not able to determine whether TLR3 was responsible for IFN-beta production because the epithelial cells were unresponsive to the TLR3 ligand poly(I-C), and small interfering RNA (siRNA) techniques were ineffective at knocking down TLR3 expression. To further investigate the potential role of TLR3 in the infected epithelial cell secretion of IFN-beta, we examined the roles of its downstream signaling molecules TRIF and IFN regulatory factor 3 (IRF-3) using a dominant-negative TRIF molecule and siRNA specific for TRIF and IRF-3. Antagonism of either IRF-3 or TRIF signaling significantly decreased IFN-beta production. These data implicate TLR3, or an unknown PRR utilizing TRIF, as the source of IFN-beta production by Chlamydia-infected oviduct epithelial cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号