Cardiovascular actions of insulin |
| |
Authors: | Muniyappa Ranganath Montagnani Monica Koh Kwang Kon Quon Michael J |
| |
Affiliation: | Diabetes Unit, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, Maryland 20892-1632, USA. |
| |
Abstract: | Insulin has important vascular actions to stimulate production of nitric oxide from endothelium. This leads to capillary recruitment, vasodilation, increased blood flow, and subsequent augmentation of glucose disposal in classical insulin target tissues (e.g., skeletal muscle). Phosphatidylinositol 3-kinase-dependent insulin-signaling pathways regulating endothelial production of nitric oxide share striking parallels with metabolic insulin-signaling pathways. Distinct MAPK-dependent insulin-signaling pathways (largely unrelated to metabolic actions of insulin) regulate secretion of the vasoconstrictor endothelin-1 from endothelium. These and other cardiovascular actions of insulin contribute to coupling metabolic and hemodynamic homeostasis under healthy conditions. Cardiovascular diseases are the leading cause of morbidity and mortality in insulin-resistant individuals. Insulin resistance is typically defined as decreased sensitivity and/or responsiveness to metabolic actions of insulin. This cardinal feature of diabetes, obesity, and dyslipidemia is also a prominent component of hypertension, coronary heart disease, and atherosclerosis that are all characterized by endothelial dysfunction. Conversely, endothelial dysfunction is often present in metabolic diseases. Insulin resistance is characterized by pathway-specific impairment in phosphatidylinositol 3-kinase-dependent signaling that in vascular endothelium contributes to a reciprocal relationship between insulin resistance and endothelial dysfunction. The clinical relevance of this coupling is highlighted by the findings that specific therapeutic interventions targeting insulin resistance often also ameliorate endothelial dysfunction (and vice versa). In this review, we discuss molecular mechanisms underlying cardiovascular actions of insulin, the reciprocal relationships between insulin resistance and endothelial dysfunction, and implications for developing beneficial therapeutic strategies that simultaneously target metabolic and cardiovascular diseases. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|