首页 | 本学科首页   官方微博 | 高级检索  
检索        


On the role of brain 5-HT7 receptor in the mechanism of hypothermia: comparison with hypothermia mediated via 5-HT1A and 5-HT3 receptor
Authors:Naumenko Vladimir S  Kondaurova Elena M  Popova Nina K
Institution:Department of Behavioral Neurogenomics, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
Abstract:Intracerebroventricular administration of selective agonist of serotonin 5-HT7 receptor LP44 (4-2-(methylthio)phenyl]-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1-pyperasinehexanamide hydrochloride; 10.3, 20.5 or 41.0 nmol) produced considerable hypothermic response in CBA/Lac mice. LP44-induced (20.5 nmol) hypothermia was significantly attenuated by the selective 5-HT7 receptor antagonist SB 269970 (16.1 fmol, i.c.v.) pretreatment. At the same time, intraperitoneal administration of LP44 in a wide range of doses 1.0, 2.0 or 10.0 mg/kg (2.0, 4.0, 20.0 μmol/kg) did not cause considerable hypothermic response. These findings indicate the implication of central, rather than peripheral 5-HT7 receptors in the regulation of hypothermia. The comparison of LP44-induced (20.5 nmol) hypothermic reaction in eight inbred mouse strains (DBA/2J, CBA/Lac, C57BL/6, BALB/c, ICR, AKR/J, C3H and Asn) was performed and a significant effect of genotype was found.In the same eight mouse strains, functional activity of 5-HT1A and 5-HT3 receptors was studied. The comparison of hypothermic responses produced by 5-HT7 receptor agonist LP44 (20.5 nmol, i.c.v.) and 5-HT1A receptor agonist 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg), 5-HT3 receptor agonist m-CPBG (40.0 nmol, i.c.v.) did not reveal considerable interstrain correlations between 5-HT7 and 5-HT1A or 5-HT3 receptor-induced hypothermia. The selective 5-HT7 receptor antagonist SB 269970 (16.1 fmol, i.c.v.) failed to attenuate the hypothermic effect of 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg) and m-CPBG (40.0 nmol, i.c.v.) indicating that the brain 5-HT7 receptor is not involved in the hypothermic effects of 8-OH-DPAT or m-CPBG. The obtained results suggest that the central 5-HT7 receptor plays an essential role in the mediation of thermoregulation independent of 5-HT1A and 5-HT3 receptors.
Keywords:5-HT7 receptor-induced hypothermia  5-HT7 receptor agonist LP44  5-HT1A receptor agonist 8-OH-DPAT  5-HT1A receptor-induced hypothermia  5-HT3 receptor-induced hypothermia  Inbred mouse strains
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号