首页 | 本学科首页   官方微博 | 高级检索  
     


Antinociceptive effect of intrathecal administration of taurine in rat models of neuropathic pain
Authors:Tadanori Terada MD  Koji Hara MD   PhD  Yasunori Haranishi MD   PhD  Takeyoshi Sata MD   PhD
Affiliation:Department of Anesthesiology, University of Occupational and Environmental Health, School of Medicine, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu 807-8555, Japan.
Abstract:

Purpose

Taurine is the most abundant amino acid in many tissues. Although taurine has been shown to be antinociceptive, in this report, our focus is to elucidate the mechanism and action site on neuropathic pain. This study used behavioural assessments to determine whether taurine attenuates neuropathic pain in the spinal cord.

Methods

Chronic constriction injury (CCI) to the sciatic nerve and streptozotocin-induced diabetic neuropathy were introduced to male Sprague-Dawley rats. We then assessed the antinociceptive effect of spinal injections of taurine (100, 200, 400, or 800 μg) using electronic von Frey, paw pressure, and plantar tests. To explore the effect of taurine on motor function, a rotarod test was performed, and in order to determine which neurotransmitter pathway is involved in taurine’s action, we examined how several antagonists of spinal pain processing receptors altered the effect of taurine 400 μg in a paw pressure test.

Results

Taurine alleviated mechanical allodynia, mechanical hyperalgesia, and thermal hyperalgesia in CCI rats and suppressed mechanical allodynia and hyperalgesia in diabetic rats. Significant effects were observed at 200 μg in both models. On the other hand, taurine dose-dependently affected motor performance, and a significant effect was seen at 400 μg. The antinociceptive effects were reversed completely by pretreatment with an intrathecal injection of strychnine, a glycine receptor antagonist.

Conclusion

The present study demonstrated that intrathecal administration of taurine attenuates different models of neuropathic pain, and these effects seem to be mediated by the activation of glycinergic neurotransmission. These findings suggest that taurine may be a candidate remedy for neuropathic pain.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号