首页 | 本学科首页   官方微博 | 高级检索  
     


Flavonoid Apigenin Is an Inhibitor of the NAD+ase CD38: Implications for Cellular NAD+ Metabolism,Protein Acetylation,and Treatment of Metabolic Syndrome
Authors:Carlos Escande  Veronica Nin  Nathan L. Price  Verena Capellini  Ana P. Gomes  Maria Thereza Barbosa  Luke O’Neil  Thomas A. White  David A. Sinclair  Eduardo N. Chini
Affiliation:1.Department of Anesthesiology and Kogod Aging Center Mayo Clinic, Rochester, Minnesota;2.Glenn Laboratories for the Biological Mechanisms of Aging, Genetics Department, Harvard Medical School, Boston, Massachusetts.
Abstract:Metabolic syndrome is a growing health problem worldwide. It is therefore imperative to develop new strategies to treat this pathology. In the past years, the manipulation of NAD+ metabolism has emerged as a plausible strategy to ameliorate metabolic syndrome. In particular, an increase in cellular NAD+ levels has beneficial effects, likely because of the activation of sirtuins. Previously, we reported that CD38 is the primary NAD+ase in mammals. Moreover, CD38 knockout mice have higher NAD+ levels and are protected against obesity and metabolic syndrome. Here, we show that CD38 regulates global protein acetylation through changes in NAD+ levels and sirtuin activity. In addition, we characterize two CD38 inhibitors: quercetin and apigenin. We show that pharmacological inhibition of CD38 results in higher intracellular NAD+ levels and that treatment of cell cultures with apigenin decreases global acetylation as well as the acetylation of p53 and RelA-p65. Finally, apigenin administration to obese mice increases NAD+ levels, decreases global protein acetylation, and improves several aspects of glucose and lipid homeostasis. Our results show that CD38 is a novel pharmacological target to treat metabolic diseases via NAD+-dependent pathways.Obesity is a disease that has reached epidemic proportions in developed and developing countries (13). In the U.S., >60% of the population is overweight (1,3,4). Obesity is a feature of metabolic syndrome, which includes glucose intolerance, insulin resistance, dyslipidemia, and hypertension. These pathologies are well-documented risk factors for cardiovascular disease, type 2 diabetes, and stroke (4). It is therefore imperative to envision new strategies to treat metabolic syndrome and obesity.Recently, the role of NAD+ as a signaling molecule in metabolism has become a focus of intense research. It was shown that an increase in intracellular NAD+ levels in tissues protects against obesity (5,6), metabolic syndrome, and type 2 diabetes (57). Our group was the first to demonstrate that an increase in NAD+ levels protects against high-fat diet–induced obesity, liver steatosis, and metabolic syndrome (5). This concept was later expanded by others using different approaches, including inhibition of poly-ADP-ribose polymerase (PARP)1 (6) and stimulation of NAD+ synthesis (7).The ability of NAD+ to affect metabolic diseases seems to be mediated by sirtuins (8). This family of seven NAD+-dependent protein deacetylases, particularly SIRT1, SIRT3, and SIRT6, has gained significant attention as candidates to treat metabolic syndrome and obesity (9). Sirtuins use and degrade NAD+ as part of their enzymatic reaction (8), which makes NAD+ a limiting factor for sirtuin activity (9). In particular, silent mating information regulation 2 homolog 1 (SIRT1) has been shown to deacetylate several proteins, including p53 (10), RelA/p65 (11), PGC1-α (12), and histones (13), among others. In addition, increased expression of SIRT1 (14), increased SIRT1 activity (15), and pharmacological activation of SIRT1 (16) protect mice against liver steatosis and other features of metabolic syndrome when mice are fed a high-fat diet. Given the beneficial consequences of increased SIRT1 activity, great efforts are being directed toward the development of pharmacological interventions aimed at activating SIRT1.We previously reported that the protein CD38 is the primary NAD+ase in mammalian tissues (17). In fact, tissues of mice that lack CD38 contain higher NAD+ levels (17,18) and increased SIRT1 activity compared with wild-type mice (5,17). CD38 knockout mice are resistant to high-fat diet–induced obesity and other aspects of metabolic disease, including liver steatosis and glucose intolerance, by a mechanism that is SIRT1 dependent (5). These multiple lines of evidence suggest that pharmacological CD38 inhibition would lead to SIRT1 activation through an increase in NAD+ levels, resulting in beneficial effects on metabolic syndrome.Recently, it was shown that in vitro, CD38 is inhibited by flavonoids, including quercetin (19). Flavonoids are naturally occurring compounds present in a variety of plants and fruits (20). Among them, quercetin [2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one] and apigenin [5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one] have been shown to have beneficial effects against cancer (2124). In fact, apigenin and quercetin ameliorate atherosclerosis (25) and reduce inflammation (2628). However, the mechanisms of action of flavonoids remain largely unknown. We hypothesized that the effect of some flavonoids in vivo may occur through inhibition of CD38 and an increase in NAD+ levels in tissues, which lead to protection against metabolic syndrome.Here, we show that CD38 expression and activity regulate cellular NAD+ levels and global acetylation of proteins, including SIRT1 substrates. We confirmed that quercetin is a CD38 inhibitor in vitro and in cells. Importantly, we demonstrate that apigenin is a novel inhibitor of CD38 in vitro and in vivo. Treatment of cells with apigenin or quercetin inhibits CD38 and promotes an increase in intracellular NAD+ levels. An increased NAD+ level decreases protein acetylation through sirtuin activation. Finally, treatment of obese mice with apigenin results in CD38 inhibition, higher NAD+ levels in the liver, and a decrease in protein acetylation. Apigenin treatment improves glucose homeostasis, glucose tolerance, and lipid metabolism in obese mice. Our results clearly demonstrate that CD38 is a novel therapeutic target for the treatment of metabolic diseases and that apigenin and quercetin as well as other CD38 inhibitors may be used to treat metabolic syndrome.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号