首页 | 本学科首页   官方微博 | 高级检索  
检索        


Regional gene therapy for full-thickness articular cartilage lesions using naked DNA with a collagen matrix.
Authors:Paul E Di Cesare  Sally R Frenkel  Cathy S Carlson  Carrie Fang  Chuanju Liu
Institution:Musculoskeletal Research Laboratory, New York University-Hospital for Joint Diseases, Department of Orthopaedic Surgery, 301 East 17th Street, Suite 1500, New York 10003, USA. pedicesare@aol.com
Abstract:A novel gene therapy approach for treating damaged cartilage is proposed that involves placing endotoxin-free cDNA containing the gene for bone morphogenetic protein-2 (BMP-2) in type I collagen sponges and then transferring the naked plasmid DNA construct to the injury site. A full-thickness cartilaginous defect in rabbits implanted with plasmid containing a marker gene (beta-galactosidase) showed expressed protein as detected by immunostaining. At 1 week postimplantation, mesenchymal cells subjacent to the defect had incorporated the implanted naked plasmid DNA and, once transfected, served as local bioreactors, transiently producing the gene product. Plasmids containing the gene for BMP-2 implanted in collagen sponges in cartilage lesions stimulated hyalinelike articular cartilage repair at 12 weeks postimplantation, nearly equivalent in quality to that induced by collagen sponges with recombinant BMP-2 protein. Our approach circumvents the risks of inflammation and immunogenic response associated with the use of viral vectors. Naked plasmid DNA as a vehicle for transferring therapeutic genes has been shown to be effective in a therapeutic model within rabbit articular cartilage and appears to be safe and cost effective.
Keywords:cartilage repair  gene therapy  naked DNA  bone morphogenetic protein‐2 (BMP‐2)  collagen sponge
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号