首页 | 本学科首页   官方微博 | 高级检索  
     


beta-Amyloid neurotoxicity is exacerbated during glycolysis inhibition and mitochondrial impairment in the rat hippocampus in vivo and in isolated nerve terminals: implications for Alzheimer's disease
Authors:Arias Clorinda  Montiel Teresa  Quiroz-Báez Ricardo  Massieu Lourdes
Affiliation:Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México.
Abstract:Senile plaques composed mainly by beta-amyloid (Abeta) protein are one of the pathological hallmarks of Alzheimer's disease (AD). In vitro, Abeta and its active fragment 25-35 have been shown either to be directly neurotoxic or to exacerbate the damaging effect of other neurotoxic insults. However, the attempts to replicate Abeta neurotoxicity in vivo have yielded conflicting results. One of the most consistent alterations in AD is a reduced resting glucose utilization. Important evidence suggests that impairment of brain energy metabolism can lead to neuronal damage or facilitate the deleterious effects of some neurotoxic agents. In the present study we have investigated the influence of glycolysis inhibition induced by iodoacetate, and mitochondrial impairment induced by 3-nitropropionic acid (3-NP), in the toxicity of Abeta. We have studied Abeta neurotoxicity during energy deficiency both in vivo in the dentate gyrus of the hippocampal formation and in presynaptic terminals isolated from neocortex and hippocampus. Results show that during metabolic inhibition an enhanced vulnerability of hippocampal neurons to Abeta peptide toxicity occurs, probably resulting from decreased glucose metabolism and mitochondrial ATP production. Synaptosomal response to energy impairment and Abeta toxicity was evaluated by the MTT assay. Results suggest that synapses may be particularly sensitive to metabolic perturbation, which in turn exacerbates Abeta toxicity. The present data provide experimental support to the hypothesis that certain risk factors such as metabolic dysfunction and amyloid accumulation may interact to exacerbate AD, and that metabolic substrates such as pyruvate may play a role as a therapeutic tool.
Keywords:Alzheimer's disease   β-amyloid   excitotoxicity   glycolysis inhibition   mitochondrial failure   synaptic toxicity   neurodegeneration
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号