首页 | 本学科首页   官方微博 | 高级检索  
检索        


Sleep modulates effective connectivity: A study using intracranial stimulation and recording
Institution:1. Department of Neurology, University Emergency Hospital, Bucharest, Romania;2. Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania;3. Brain Research Group, Romanian Academy, Bucharest, Romania;4. Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund, Denmark and Department of Clinical Neurophysiology, Aarhus University Hospital; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark;5. Physics Department, University of Bucharest, Bucharest, Romania;6. Neurosurgery Department, Bagdasar-Arseni Hospital, Bucharest, Romania;7. FHC Inc., Bowdoin, ME, United States;1. Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Japan;2. Emeritus of Gifu University, Japan;3. Hermitage of Magnetoencephalography, Japan
Abstract:ObjectiveSleep is an active process with an important role in memory. Epilepsy patients often display a disturbed sleep architecture, with consequences on cognition. We aimed to investigate the effect of sleep on cortical networks’ organization.MethodsWe analyzed cortico-cortical evoked responses elicited by single pulse electrical stimulation (SPES) using intracranial depth electrodes in 25 patients with drug-resistant focal epilepsy explored using stereo-EEG. We applied the SPES protocol during wakefulness and NREM – N2 sleep. We analyzed 31,710 significant responses elicited by 799 stimulations covering most brain structures, epileptogenic or non-epileptogenic. We analyzed effective connectivity between structures using a graph-theory approach.ResultsSleep increases excitability in the brain, regardless of epileptogenicity. Local and distant connections are differently modulated by sleep, depending on the tissue epileptogenicity.In non-epileptogenic areas, frontal lobe connectivity is enhanced during sleep. There is increased connectivity between the hippocampus and temporal neocortex, while perisylvian structures are disconnected from the temporal lobe. In epileptogenic areas, we found a clear interhemispheric difference, with decreased connectivity in the right hemisphere during sleep.ConclusionsSleep modulates brain excitability and reconfigures functional brain networks, depending on tissue epileptogenicity.SignificanceWe found specific patterns of information flow during sleep in physiologic and pathologic structures, with possible implications for cognition.
Keywords:Effective connectivity  Epilepsy  Single pulse electrical stimulation  Sleep  stereo-EEG  A"}  {"#name":"keyword"  "$":{"id":"k0035"}  "$$":[{"#name":"text"  "_":"amygdala  AASM"}  {"#name":"keyword"  "$":{"id":"k0045"}  "$$":[{"#name":"text"  "_":"American Academy of Sleep Medicine  ACC"}  {"#name":"keyword"  "$":{"id":"k0055"}  "$$":[{"#name":"text"  "_":"anterior cingulum  AG"}  {"#name":"keyword"  "$":{"id":"k0065"}  "$$":[{"#name":"text"  "_":"angular gyrus  aI"}  {"#name":"keyword"  "$":{"id":"k0075"}  "$$":[{"#name":"text"  "_":"anterior insula  C"}  {"#name":"keyword"  "$":{"id":"k0085"}  "$$":[{"#name":"text"  "_":"cuneus  CCEP"}  {"#name":"keyword"  "$":{"id":"k0095"}  "$$":[{"#name":"text"  "_":"cortico-cortical evoked potenatials  DLPFC"}  {"#name":"keyword"  "$":{"id":"k0105"}  "$$":[{"#name":"text"  "_":"dorsolateral prefrontal cortex  DMPFC"}  {"#name":"keyword"  "$":{"id":"k0115"}  "$$":[{"#name":"text"  "_":"dorsomedial prefrontal cortex  E"}  {"#name":"keyword"  "$":{"id":"k0125"}  "$$":[{"#name":"text"  "_":"entorhinal cortex  ER"}  {"#name":"keyword"  "$":{"id":"k0135"}  "$$":[{"#name":"text"  "_":"early responses  EZ"}  {"#name":"keyword"  "$":{"id":"k0145"}  "$$":[{"#name":"text"  "_":"epileptogenic zone  F  fusiform gyrus  FEF"}  {"#name":"keyword"  "$":{"id":"k0155"}  "$$":[{"#name":"text"  "_":"frontal eye fields  Hc"}  {"#name":"keyword"  "$":{"id":"k0165"}  "$$":[{"#name":"text"  "_":"hippocampus  IPL"}  {"#name":"keyword"  "$":{"id":"k0175"}  "$$":[{"#name":"text"  "_":"inferior parietal lobule  ITG"}  {"#name":"keyword"  "$":{"id":"k0185"}  "$$":[{"#name":"text"  "_":"inferior temporal gyrus  LG"}  {"#name":"keyword"  "$":{"id":"k0195"}  "$$":[{"#name":"text"  "_":"lingual gyrus  MCC"}  {"#name":"keyword"  "$":{"id":"k0205"}  "$$":[{"#name":"text"  "_":"middle cingulum  MoCA"}  {"#name":"keyword"  "$":{"id":"k0215"}  "$$":[{"#name":"text"  "_":"Montreal Cognitive Assessment Test  MOFC"}  {"#name":"keyword"  "$":{"id":"k0225"}  "$$":[{"#name":"text"  "_":"medial orbitofrontal cortex  MTG"}  {"#name":"keyword"  "$":{"id":"k0235"}  "$$":[{"#name":"text"  "_":"middle temporal gyrus  NEZ"}  {"#name":"keyword"  "$":{"id":"k0245"}  "$$":[{"#name":"text"  "_":"non-epileptogenic zone  O"}  {"#name":"keyword"  "$":{"id":"k0255"}  "$$":[{"#name":"text"  "_":"lateral occipital cortex  OFC"}  {"#name":"keyword"  "$":{"id":"k0265"}  "$$":[{"#name":"text"  "_":"orbitofrontal cortex  OpF"}  {"#name":"keyword"  "$":{"id":"k0275"}  "$$":[{"#name":"text"  "_":"frontal operculum  OpP"}  {"#name":"keyword"  "$":{"id":"k0285"}  "$$":[{"#name":"text"  "_":"parietal operculum  OpR"}  {"#name":"keyword"  "$":{"id":"k0295"}  "$$":[{"#name":"text"  "_":"Rolandic operculum  OpT"}  {"#name":"keyword"  "$":{"id":"k0305"}  "$$":[{"#name":"text"  "_":"temporal operculum  PCC"}  {"#name":"keyword"  "$":{"id":"k0315"}  "$$":[{"#name":"text"  "_":"posterior cingulum  PCL"}  {"#name":"keyword"  "$":{"id":"k0325"}  "$$":[{"#name":"text"  "_":"paracentral lobule  pI"}  {"#name":"keyword"  "$":{"id":"k0335"}  "$$":[{"#name":"text"  "_":"posterior insula  PHG"}  {"#name":"keyword"  "$":{"id":"k0345"}  "$$":[{"#name":"text"  "_":"parahippocampal gyrus  PMC"}  {"#name":"keyword"  "$":{"id":"k0355"}  "$$":[{"#name":"text"  "_":"premotor cortex  PrC"}  {"#name":"keyword"  "$":{"id":"k0365"}  "$$":[{"#name":"text"  "_":"precuneus  preSMA"}  {"#name":"keyword"  "$":{"id":"k0375"}  "$$":[{"#name":"text"  "_":"pre-supplementary motor area  R"}  {"#name":"keyword"  "$":{"id":"k0385"}  "$$":[{"#name":"text"  "_":"primary motor cortex  RMS"}  {"#name":"keyword"  "$":{"id":"k0395"}  "$$":[{"#name":"text"  "_":"root-mean-square  RFTC"}  {"#name":"keyword"  "$":{"id":"k0405"}  "$$":[{"#name":"text"  "_":"radiofrequency thermocoagulation  S"}  {"#name":"keyword"  "$":{"id":"k0415"}  "$$":[{"#name":"text"  "_":"primary sensitive cortex  SEEG"}  {"#name":"keyword"  "$":{"id":"k0425"}  "$$":[{"#name":"text"  "_":"stereoelectroencephalography  SM"}  {"#name":"keyword"  "$":{"id":"k0435"}  "$$":[{"#name":"text"  "_":"supramarginal gyrus  SMA"}  {"#name":"keyword"  "$":{"id":"k0445"}  "$$":[{"#name":"text"  "_":"supplementary motor area  SPES"}  {"#name":"keyword"  "$":{"id":"k0455"}  "$$":[{"#name":"text"  "_":"single pulse electrical stimulation  SPL"}  {"#name":"keyword"  "$":{"id":"k0465"}  "$$":[{"#name":"text"  "_":"superior parietal lobule  STG"}  {"#name":"keyword"  "$":{"id":"k0475"}  "$$":[{"#name":"text"  "_":"superior temporal gyrus  TP"}  {"#name":"keyword"  "$":{"id":"k0485"}  "$$":[{"#name":"text"  "_":"temporal pole  TPO"}  {"#name":"keyword"  "$":{"id":"k0495"}  "$$":[{"#name":"text"  "_":"temporo-parieto-occipital junction  V1"}  {"#name":"keyword"  "$":{"id":"k0505"}  "$$":[{"#name":"text"  "_":"primary visual cortex  VLPFC"}  {"#name":"keyword"  "$":{"id":"k0515"}  "$$":[{"#name":"text"  "_":"ventrolateral prefrontal cortex  VMPFC"}  {"#name":"keyword"  "$":{"id":"k0525"}  "$$":[{"#name":"text"  "_":"ventromedial prefrontal cortex  W"}  {"#name":"keyword"  "$":{"id":"k0535"}  "$$":[{"#name":"text"  "_":"Wernicke area  WM"}  {"#name":"keyword"  "$":{"id":"k0545"}  "$$":[{"#name":"text"  "_":"white matter
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号