Characterization of the binding of [3H](+)-pentazocine to sigma recognition sites in guinea pig brain. |
| |
Authors: | D L DeHaven-Hudkins L C Fleissner F Y Ford-Rice |
| |
Affiliation: | Department of Enzymology and Receptor Biochemistry, Sterling Winthrop Pharmaceuticals Research Division, Malvern, PA 19355-1314. |
| |
Abstract: | The selective sigma compound (+)-pentazocine was radiolabeled and its binding characteristics in guinea pig brain membranes were investigated. [3H](+)-Pentazocine bound to a single high-affinity site with a KD of 2.9 nM and a Bmax of 1998 fmol/mg protein. Saturation was achieved at a ligand concentration of 15 nM. Maximal specific binding was observed at 37 degrees C and was greater than 90% of total binding. Equilibrium was reached by 120 min and dissociation was complete by 420 min, with a t1/2 of 121 min. Li+, Ca2+ and Mg2+ inhibited binding at high concentrations, and binding was insensitive to adenyl and guanyl nucleotides. Stereoselectivity was observed for the inhibition of binding by benzomorphans, 3-(3-hydroxyphenyl)-N-propylpiperidine and butaclamol, and the (+) enantiomers and alpha diastereomers of pentazocine and cyclazocine were more potent than their corresponding (-) enantiomers and beta diastereomers. The rank order of potency for the sigma reference agents to displace [3H](+)-pentazocine binding was similar to that reported using the [3H]sigma ligands dextromethorphan, 1,3-di(2-tolyl)guanidine and (+)-3-(3-hydroxyphenyl)-N-propylpiperidine. Haloperidol, (+)-pentazocine, (+)-3-(3-hydroxyphenyl)-N-propylpiperidine and rimcazole were competitive inhibitors of binding to the [3H](+)-pentazocine-defined sigma recognition site, suggesting that these different structural classes of compounds all bind to a single molecular entity. |
| |
Keywords: | |
|
|