首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical and electrical properties of denervated rat skeletal muscles
Authors:Basilio A. Kotsias,Salom  n Muchnik
Affiliation:Basilio A. Kotsias,Salomón Muchnik,
Abstract:Mechanical activity (twitch and tetanus) and electrical activity (single and repetitive action potentials) were recorded in vitro (34 degrees C) in control and denervated (3 to 14 days) soleus and extensor digitorum longus muscles of the rat. After denervation tetanic tension (100 to 200 Hz, 500 ms duration) was decreased in both types of muscles. Denervation reduced significantly the rates of rise and fall and the amplitude of the action potential in both types of muscle fibers. In denervated fibers with very low resting membrane potential no action potentials could be recorded: in these fibers only a slow response without overshoot was detected. Hyperpolarization of denervated fibers to -90 mV prior to application of the depolarizing pulse increased their excitability. Action potential amplitudes were well maintained during tetanic stimulation (200 Hz, 40 to 90 ms) in innervated fibers. Depolarization of the innervated fibers with cathodic current before the tetanic pulse hindered the generation of repetitive action potentials at 200 Hz. A proportion of denervated fibers stimulated at 100 to 200 Hz generated only one action potential or gave rise to an incomplete train. Hyperpolarization of the denervated fibers resulted in an improvement in the ability to generate a train of action potentials at 100 to 200 Hz. A group of denervated fibers exhibited well maintained action potentials during tetanus. We suggest that failure in the repetitive electrical activity of denervated fibers could be the reason for the reduced tension of tetanus. Depolarization of the fibers and/or the increment in the electrical time constant of the sarcolemma are suggested for the decrease in the electrical excitability of denervated fibers.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号