首页 | 本学科首页   官方微博 | 高级检索  
     


The distribution of neuronal and inducible nitric oxide synthase in urethral stricture formation
Authors:Cavalcanti Andre G  Yucel Selcuk  Deng Donna Y  McAninch Jack W  Baskin Laurence S
Affiliation:Department of Urology and Pediatrics, University of California-San Francisco Children's Medical Center, University of California-San Francisco, 94143, USA.
Abstract:PURPOSE: The distribution of neuronal (n) and inducible (i) nitric oxide synthase (NOS) may have a role in the maintenance of normal urethral spongiosum and during the development of spongiofibrosis in urethral stricture disease. MATERIALS AND METHODS: Eight normal and 33 strictured human bulbar urethras were studied by histological and immunohistochemical techniques for the neuronal markers S-100, nNOS and iNOS. The smooth muscle-to-collagen ratio was calculated by morphometric analysis of Masson's trichrome sections. Immunohistochemical staining patterns of the neuronal markers in normal urethral tissue was compared to that in urethral stricture tissue with spongiofibrosis. RESULTS: The smooth muscle-to-collagen ratio was significantly lower in the strictured urethra compared to that in the control group (p = 0.001). In the strictured bulbar urethra nNOS immunoreactivity was decreased compared to that in normal urethral tissue. The severity of spongiofibrosis corresponded to the loss of nNOS immunoreactivity. iNOS immunoreactivity was found in strictured urethral epithelium and spongiosal tissue, whereas the control group was nonimmunoreactive to iNOS. CONCLUSIONS: Urethral stricture formation is a fibrotic process associated with significant changes in NOS metabolism. Abnormal collagen synthesis following urethral trauma may be stimulated by inappropriate iNOS activity. A functional nerve supply to the urethral spongiosum seems to be crucial in the maintenance of the unique ultrastructure of the urethral spongiosum.
Keywords:urethra   urethral stricture   fibrosis   inducible nitric oxide synthase   neural constitutive nitric oxide synthase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号