首页 | 本学科首页   官方微博 | 高级检索  
检索        


Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent
Authors:Datta Saurabh  Coussios Constantin-C  Ammi Azzdine Y  Mast T Douglas  de Courten-Myers Gabrielle M  Holland Christy K
Institution:Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH.
Abstract:Ultrasound has been shown previously to act synergistically with a thrombolytic agent, such as recombinant tissue plasminogen activator (rt-PA) to accelerate thrombolysis. In this in vitro study, a commercial contrast agent, Definity((R)), was used to promote and sustain the nucleation of cavitation during pulsed ultrasound exposure at 120 kHz. Ultraharmonic signals, broadband emissions and harmonics of the fundamental were measured acoustically by using a focused hydrophone as a passive cavitation detector and used to quantify the level of cavitation activity. Human whole blood clots suspended in human plasma were exposed to a combination of rt-PA, Definity((R)) and ultrasound at a range of ultrasound peak-to-peak pressure amplitudes, which were selected to expose clots to various degrees of cavitation activity. Thrombolytic efficacy was determined by measuring clot mass loss before and after the treatment and correlated with the degree of cavitation activity. The penetration depth of rt-PA and plasminogen was also evaluated in the presence of cavitating microbubbles using a dual-antibody fluorescence imaging technique. The largest mass loss (26.2%) was observed for clots treated with 120-kHz ultrasound (0.32-MPa peak-to-peak pressure amplitude), rt-PA and stable cavitation nucleated by Definity((R)). A significant correlation was observed between mass loss and ultraharmonic signals (r = 0.85, p < 0.0001, n = 24). The largest mean penetration depth of rt-PA (222 mum) and plasminogen (241 mum) was observed in the presence of stable cavitation activity. Stable cavitation activity plays an important role in enhancement of thrombolysis and can be monitored to evaluate the efficacy of thrombolytic treatment. (E-mail: Christy.Holland@uc.edu).
Keywords:Ultrasound-assisted thrombolysis  Stroke therapy  Ultraharmonics  Stable cavitation  Therapeutic ultrasound
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号