Abstract: | The nucleus of the tractus solitarius is a site for termination of primary afferents originating from a variety of visceral receptors. The localization of bouton terminals of slowly adapting lung stretch (SAR) afferent fibers originating from the tracheobronchial tree have been described in the companion paper (Kalia and Richter, '85). The most conspicuous finding regarding the location of SAR terminals is that they are concentrated within specific subnuclear groups of the nucleus of the tractus solitarius (nTS) and are distributed widely in the rostrocaudal plane of the medulla oblongata. These light microscopic features have provided us with valuable information with regard to the organization of visceral afferents in the central nervous system. The synaptic profiles formed by the 476 bouton terminals of these HRP-labeled afferents have been described in this paper in serial thin sections. All of the bouton terminals examined under the electron microscope were found to contain round synaptic vesicles. Synaptic boutons (1.0-3.0 microns in diameter) were usually of the en passant variety and made contact with different structures depending upon the subnucleus which was examined. In the ventral (v) and the ventrolateral (vl) subnuclei of the nTS, asymmetrical (type I) synaptic contacts containing round, clear synaptic vesicles of 35-50 microns in diameter were found and these contacts were made with (1) the soma of cell bodies located in that subnucleus; (2) spiny dendrites in that nucleus; (3) vesicle-containing axon terminals that were presynaptic to the HRP-labeled bouton terminal; and (4) vesicle-containing dendrites in which the HRP profile was presynaptically located. The terminal axon remained myelinated till the last 1 micron before the bouton terminal was formed. There was no distinct, unmyelinated portion of the terminal axon. The synaptic bouton received axon-axonal synapses from unlabeled bouton terminals containing round, clear vesicles. This is the first report of the localization of these afferent fibers as well as of the regional variations in the ultrastructure of boutons of physiologically identified terminals. It appears likely that the lung stretch afferent fibers, by having axon-axonal as well as axon-somatic contact in the ventral, ventrolateral, and intermediate subnuclei of the nTS, can interact in a variety of different ways in this region. The significance of these features in relation to the precise influence of respiratory afferents on central respiratory mechanisms needs to be evaluated further. |