Characterization of voltage-independent Ca2+ channels activated by endothelin-1 |
| |
Authors: | Iwamuro Y Zhang X F Okamoto Y Miwa S Masaki T |
| |
Affiliation: | Department of Pharmacology, Kyoto University Faculty of Medicine, Japan. |
| |
Abstract: | To clarify Ca2+ entry channels involved in the endothelin-1 (ET-1)-induced increase in the intracellular concentration ([Ca2+]i), we performed whole-cell recordings of patch-clamp techniques and monitoring of [Ca2+]i with Ca2+ indicators fura-2 and fluo-3 in A7r5 cells (a cell line derived from rat thoracic aortic smooth muscle cells). With whole-cell recordings, lower concentrations (< or = 1 nM) of ET-1 activated a Ca(2+)-permeable nonselective cation channel (designated NSCC-1). In contrast, higher concentrations (> or = 1 nM) of ET-1 activated two types of Ca(2+)-permeable nonselective cation channel (designated NSCC-1 and NSCC-2) and store-operated Ca2+ channel (SOCC). Importantly, we found that these Ca2+ channels can be pharmacologically discriminated using blockers of the so-called receptor operated Ca2+ influx such as SK&F 96365 and LOE 908. That is, NSCC-1 is resistant to SK&F 96365 but sensitive to LOE 908; NSCC-2 is sensitive to both SK&F 96365 and LOE 908; SOCC is sensitive to SK&F 96365 but resistant to LOE 908. Using these blockers, we analyzed the ET-1-induced increase in [Ca2+]i. The increase in [Ca2+]i induced by lower concentrations of ET-1 was resistant to SK&F 96365 but sensitive to LOE 908. In contrast, the increase in [Ca2+]i induced by higher concentrations of ET-1 was partially suppressed to approximately 30% of controls by either SK&F 96365 or LOE 908 alone, and it was abolished by their combination. These results show that the increase in [Ca2+]i induced by lower concentrations (< or = 1 nM) of ET-1 results from Ca2+ influx through NSCC-1, whereas the increase in [Ca2+]i induced by higher concentrations (> or = 10 nM) of ET-1 results from Ca2+ influx through NSCC-1, NSCC-2 and SOCC. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|