首页 | 本学科首页   官方微博 | 高级检索  
检索        


The metabolic disposition of aprepitant, a substance P receptor antagonist, in rats and dogs.
Authors:Su-Er W Huskey  Brian J Dean  George A Doss  Zhen Wang  Cornelis E C A Hop  Reza Anari  Paul E Finke  Albert J Robichaud  Minghua Zhang  Bonnie Wang  John R Strauss  Paul K Cunningham  William P Feeney  Ronald B Franklin  Thomas A Baillie  Shuet-Hing L Chiu
Institution:Dept of Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065, USA. su_huskey@merck.com
Abstract:The absorption, metabolism, and excretion of 14C]aprepitant, a potent and selective human substance P receptor antagonist for the treatment of chemotherapy-induced nausea and vomiting, was evaluated in rats and dogs. Aprepitant was metabolized extensively and no parent drug was detected in the urine of either species. The elimination of drug-related radioactivity, after i.v. or p.o. administration of 14C]aprepitant, was mainly via biliary excretion in rats and by way of both biliary and urinary excretion in dogs. Aprepitant was the major component in the plasma at the early time points (up to 8 h), and plasma metabolite profiles of aprepitant were qualitatively similar in rats and dogs. Several oxidative metabolites of aprepitant, derived from N-dealkylation, oxidation, and opening of the morpholine ring, were detected in the plasma. Glucuronidation represented an important pathway in the metabolism and excretion of aprepitant in rats and dogs. An acid-labile glucuronide of 14C]aprepitant accounted for approximately 18% of the oral dose in rat bile. The instability of this glucuronide, coupled with its presence in bile but absence in feces, suggested the potential for enterohepatic circulation of aprepitant via this conjugate. In dogs, the glucuronide of 14C]aprepitant, together with four glucuronides derived from phase I metabolites, were present as major metabolites in the bile, accounting collectively for approximately 14% of the radioactive dose over a 4- to 24-h period after i.v. dosing. Two very polar carboxylic acids, namely, 4-fluoro-alpha-hydroxybenzeneacetic acid and 4-fluoro-alpha-oxobenzeneacetic acid, were the predominant drug-related entities in rat and dog urine.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号