首页 | 本学科首页   官方微博 | 高级检索  
     


Small-volume frequency-domain oximetry: phantom experiments and first in vivo results
Authors:Willmann Stefan  Terenji Albert  Osterholz Jens  Meister Jörg  Hering Peter  Schwarzmaier Hans-Joachim
Affiliation:Heinrich-Heine University, Department of Laser Medicine, D-40225 Düsseldorf, Germany.
Abstract:We describe a new method to determine the oxygen saturation and the total hemoglobin content of tissue in vivo absolutely at small source-detector separations (<10 mm). Phase and mean intensity of modulated laser light of various wavelengths was measured at several predetermined source-detector separations in the frequency domain. From these measured quantities, the absorption coefficient was derived using the modified time-integrated microscopic Beer-Lambert law (MBL). In addition, the interaction volume of the photons was determined using a multi-layer Monte-Carlo model of human skin. To evaluate the method, we employed homogenous solid phantoms (consisting of TiO2 particles embedded in resin) with mean scattering and absorbing properties comparable to those of human skin. Furthermore, in vivo measurements were performed in a healthy volunteer to demonstrate that the technique is applicable for the determination of the oxygen saturation and the total hemoglobin content in the skin in vivo. The proposed technique is especially suited for the on-line determination of the oxygen saturation and total hemoglobin content in applications where small applicators are required (e.g., fetal oxygen monitoring sub partu).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号