Reasons for enhanced activity of doxorubicin on co-delivery with octa(3-aminopropyl)silsesquioxane |
| |
Authors: | Kinga Piorecka Jan Kurjata Irena Bak-Sypien Marek Cypryk Urszula Steinke Wlodzimierz A. Stanczyk |
| |
Affiliation: | Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz Poland, +48-42-6803-203 |
| |
Abstract: | This paper presents results of spectroscopic (NMR, FTIR, fluorescence), Q-TOF mass spectrometry and Z-potential analyses of interactions between octa(3-aminopropyl)silsesquioxane hydrochloride (POSS-NH2·HCl) and anticancer drug – doxorubicin hydrochloride. These studies aimed at explanation of the enhanced activity of doxorubicin on co-delivery with POSS-NH2. The results point to the formation of active complexes via ionic interactions between the ammonium chloride groups of silsesquioxane and the drug, and not, as suggested earlier, via NH⋯N hydrogen bonding. It has also been shown that the main driving force for the formation of the complexes can be strengthened by π–π stacking and hydrogen bonds. The experimental results are supported by quantum mechanical calculations. This work has proven that co-delivery with POSS offers a potentially advantageous and simple approach for improved efficacy in chemotherapy, avoiding often complicated synthesis of conjugates, involving covalent bonding between drug, nanocarrier and targeting agents.The interaction between polyhedral oligomeric silsesquioxane (POSS) and doxorubicin, leading to formation of active complexes involving POSS functional aminopropyl groups and anthracycline functional groups. |
| |
Keywords: | |
|
|