首页 | 本学科首页   官方微博 | 高级检索  
     


A selective and easily recyclable dimer based on a calix[4]pyrrole derivative for the removal of mercury(ii) from water
Authors:Angela F. Danil de Namor  Salman Alharthi  Brendan Howlin  Nawal Al Hakawati
Affiliation:Laboratory of Thermochemistry, Department of Chemistry, University of Surrey, Guildford Surrey GU2 7XH UK, +44(0)-1483 689581, +44(0)-7757147701 ; Instituto Nacional de Tecnologia Industrial, Ministry of Production, Argentina
Abstract:A recyclable mercury(ii) selective dimer based on a calix[4]pyrrole derivative has been synthesised and characterised by mass and FT-IR spectrometry, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX). Information regarding the ability of the dimer to interact with metal cations was obtained from FTIR and SEM-EDX analyses. A striking feature of micrographs of the loaded dimer is the change of morphology with the cation. Based on these results, optimal conditions for removing cations from water were assessed under different experimental conditions. Results obtained demonstrate that the removal process is fast. Capacity values and selectivity factors show that the dimer is selective for Hg(ii) in single and multiple component metal solutions relative to other cations. Single-ion transfer Gibbs energies from water to a solvent containing common functionalities to those of the dimer were used to assess the counter-ion effect on the removal process. Agreement is found between these data and energy calculations derived from molecular simulation studies. Studies on polluted water in the presence of normal water components in addition to toxic metal cations are reported. Further experimental work on wastewater from the mining industry is in progress.

A recyclable mercury(ii) selective dimer based on a calix[4]pyrrole derivative has been synthesised and characterised by mass and FT-IR spectrometry, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号