首页 | 本学科首页   官方微博 | 高级检索  
检索        


The Src family kinases Hck,Fgr, and Lyn are critical for the generation of the in vivo inflammatory environment without a direct role in leukocyte recruitment
Authors:Miklós Kovács  Tamás Németh  Zoltán Jakus  Cassian Sitaru  Edina Simon  Krisztina Futosi  Bálint Botz  Zsuzsanna Helyes  Clifford A Lowell  Attila Mócsai
Abstract:Although Src family kinases participate in leukocyte function in vitro, such as integrin signal transduction, their role in inflammation in vivo is poorly understood. We show that Src family kinases play a critical role in myeloid cell–mediated in vivo inflammatory reactions. Mice lacking the Src family kinases Hck, Fgr, and Lyn in the hematopoietic compartment were completely protected from autoantibody-induced arthritis and skin blistering disease, as well as from the reverse passive Arthus reaction, with functional overlap between the three kinases. Though the overall phenotype resembled the leukocyte recruitment defect observed in β2 integrin–deficient (CD18−/−) mice, Hck−/−Fgr−/−Lyn−/− neutrophils and monocytes/macrophages had no cell-autonomous in vivo or in vitro migration defect. Instead, Src family kinases were required for the generation of the inflammatory environment in vivo and for the release of proinflammatory mediators from neutrophils and macrophages in vitro, likely due to their role in Fcγ receptor signal transduction. Our results suggest that infiltrating myeloid cells release proinflammatory chemokine, cytokine, and lipid mediators that attract further neutrophils and monocytes from the circulation in a CD18-dependent manner. Src family kinases are required for the generation of the inflammatory environment but not for the intrinsic migratory ability of myeloid cells.Src family kinases are best known for their role in malignant transformation and tumor progression, as well as signaling through cell surface integrins (Parsons and Parsons, 2004; Playford and Schaller, 2004). Due to their role in cancer development and progression, Src family kinases have become major targets of cancer therapy (Kim et al., 2009; Zhang and Yu, 2012). Src family kinases are also present in immune cells with dominant expression of Lck and Fyn in T cells and NK cells; Lyn, Fyn, and Blk in B cells and mast cells; and Hck, Fgr, and Lyn in myeloid cells such as neutrophils and macrophages (Lowell, 2004).The best known function of Src family kinases in the immune system is their role in integrin signal transduction. Indeed, Hck, Fgr, and Lyn mediate outside-in signaling by β1 and β2 integrins in neutrophils and macrophages (Lowell et al., 1996; Meng and Lowell, 1998; Mócsai et al., 1999; Suen et al., 1999; Pereira et al., 2001; Giagulli et al., 2006; Hirahashi et al., 2006), Lck participates in LFA-1–mediated T cell responses (Morgan et al., 2001; Fagerholm et al., 2002; Feigelson et al., 2001; Suzuki et al., 2007), and Src family kinases are required for LFA-1–mediated signal transduction and target cell killing by NK cells (Riteau et al., 2003; Perez et al., 2004).Src family kinases also mediate TCR signal transduction by phosphorylating the TCR-associated immunoreceptor tyrosine-based activation motifs (ITAMs), leading to recruitment and activation of ZAP-70 (van Oers et al., 1996; Zamoyska et al., 2003; Palacios and Weiss, 2004). However, their role in receptor-proximal signaling by the BCR and Fc receptors is rather controversial. Although the combined deficiency of Lyn, Fyn, and Blk results in defective BCR-induced NF-κB activation, receptor-proximal BCR signaling (ITAM phosphorylation) is not affected (Saijo et al., 2003). Genetic deficiency of Lyn, the predominant Src family kinase in B cells, even leads to enhanced BCR signaling and B cell–mediated autoimmunity (Hibbs et al., 1995; Nishizumi et al., 1995; Chan et al., 1997). Similarly, both positive (Hibbs et al., 1995; Nishizumi and Yamamoto, 1997; Parravicini et al., 2002; Gomez et al., 2005; Falanga et al., 2012) and negative (Kawakami et al., 2000; Hernandez-Hansen et al., 2004; Odom et al., 2004; Gomez et al., 2005; Falanga et al., 2012) functions for Fyn and Lyn during Fc receptor signaling in mast cells have been reported. In addition, Hck−/−Fgr−/− neutrophils respond normally to IgG immune complex–induced activation (Lowell et al., 1996) and Fc receptor–mediated phagocytosis of IgG-coated red blood cells is delayed but not blocked in Hck−/−Fgr−/−Lyn−/− macrophages (Fitzer-Attas et al., 2000; Lowell, 2004). The differential requirement for Src family kinases in TCR, BCR, and Fc receptor signaling is thought to derive from the fact that Syk, but not ZAP-70, is itself able to phosphorylate ITAM tyrosines (Rolli et al., 2002), making Src family kinases indispensable for signaling by the ZAP-70–coupled TCR but not by the Syk-coupled BCR and Fc receptors.Autoantibody production and immune complex formation is one of the major mechanisms of autoimmunity-induced tissue damage. In vivo models of those processes include the K/B×N serum transfer arthritis (Korganow et al., 1999) and autoantibody-induced blistering skin diseases (Liu et al., 1993; Sitaru et al., 2002, 2005), which mimic important aspects of human rheumatoid arthritis, bullous pemphigoid, and epidermolysis bullosa acquisita. Activation of neutrophils or macrophages (Liu et al., 2000; Wipke and Allen, 2001; Sitaru et al., 2002, 2005; Solomon et al., 2005), recognition of immune complexes by Fcγ receptors (Ji et al., 2002; Sitaru et al., 2002, 2005), and β2 integrin–mediated leukocyte recruitment (Watts et al., 2005; Liu et al., 2006; Chiriac et al., 2007; Monach et al., 2010; Németh et al., 2010) are indispensable for the development of those in vivo animal models.The role of Src family kinases in β2 integrin signaling and the requirement for β2 integrins during autoantibody-induced in vivo inflammation prompted us to test the role of Src family kinases in autoantibody-induced inflammatory disease models. We found that Hck−/−Fgr−/−Lyn−/− mice were completely protected from autoantibody-induced arthritis and inflammatory blistering skin disease. Surprisingly, this was not due to a cell-autonomous defect in β2 integrin–mediated leukocyte migration but to defective generation of an inflammatory microenvironment, likely due to the role of Src family kinases in immune complex–induced neutrophil and macrophage activation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号