首页 | 本学科首页   官方微博 | 高级检索  
检索        


Acanthamoeba culbertsoni Elicits Soluble Factors That Exert Anti-Microglial Cell Activity
Authors:Jenica L Harrison  Gabriela A Ferreira  Erinn S Raborn  Audrey D Lafrenaye  Francine Marciano-Cabral  Guy A Cabral
Institution:Department of Microbiology and Immunology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298
Abstract:Acanthamoeba culbertsoni is an opportunistic pathogen that causes granulomatous amoebic encephalitis (GAE), a chronic and often fatal disease of the central nervous system (CNS). A hallmark of GAE is the formation of granulomas around the amoebae. These cellular aggregates consist of microglia, macrophages, lymphocytes, and neutrophils, which produce a myriad of proinflammatory soluble factors. In the present study, it is demonstrated that A. culbertsoni secretes serine peptidases that degrade chemokines and cytokines produced by a mouse microglial cell line (BV-2 cells). Furthermore, soluble factors present in cocultures of A. culbertsoni and BV-2 cells, as well as in cocultures of A. culbertsoni and primary neonatal rat cerebral cortex microglia, induced apoptosis of these macrophage-like cells. Collectively, the results indicate that A. culbertsoni can apply a multiplicity of cell contact-independent modes to target macrophage-like cells that exert antiamoeba activities in the CNS.Acanthamoeba culbertsoni belongs to a group of free-living amoebae, such as Balamuthia mandrillaris, Naegleria fowleri, and Sappinia pedata, that can cause disease in humans (46, 56). Acanthamoeba spp. are found worldwide and have been isolated from a variety of environmental sources, including air, soil, dust, tap water, freshwater, seawater, swimming pools, air conditioning units, and contaminated contact lenses (30). Trophozoites feed on bacteria and algae and represent the infective form (47, 56). However, under unfavorable environmental conditions, such as extreme changes in temperature or pH, trophozoites transform into a double-walled, round cyst (22, 45).Acanthamoeba spp. cause an infection of the eye known as amoebic keratitis (AK), an infection of the skin referred to as cutaneous acanthamoebiasis, and a chronic and slowly progressing disease of the central nervous system (CNS) known as granulomatous amoebic encephalitis (GAE) (22, 23, 30, 56). GAE is most prevalent in humans who are immunocompromised (30, 33, 40) and has been reported to occur among individuals infected with the human immunodeficiency virus (HIV) (28). It has been proposed that Acanthamoeba trophozoites access the CNS by passage through the olfactory neuroepithelium (32) or by hematogenous spread from a primary nonneuronal site of infection (23, 24, 33, 53).In immune-competent individuals, GAE is characterized by the formation of granulomas. These cellular aggregates consist of microglia, macrophages, polymorphonuclear cells, T lymphocytes, and B lymphocytes (24, 30). The concerted action of these immune cells results in sequestration of amoebae and is instrumental in slowing the progression of GAE. This outcome is consistent with the observation that granulomas are rarely observed in immunocompromised individuals (34) and in mice with experimentally induced immune suppression following treatment with the cannabinoid delta-9-tetrahydrocannabinol (Δ9-THC) (8).Microglia are a resident population of macrophages in the CNS. These cells, along with CNS-invading peripheral macrophages, appear to play a critical early effector role in the control of Acanthamoeba spread during GAE (4, 5, 29, 31). In vitro, microglia have been shown to produce an array of chemokines and cytokines in response to Acanthamoeba (31, 51). However, these factors appear not to have a deleterious effect on these amoebae (29).Acanthamoeba spp. produce serine peptidases, cysteine peptidases, and metallopeptidases (1, 2, 9, 10, 14, 16, 18, 19, 21, 25, 26, 37, 38, 41, 42, 52). In the present study, it is demonstrated that serine peptidases secreted by A. culbertsoni degrade chemokines and cytokines that are produced by immortalized mouse BV-2 microglia-like cells. In addition, soluble factors present in cocultures of A. culbertsoni and BV-2 cells induced apoptosis of the BV-2 cells. Collectively, these results suggest a mode through which A. culbertsoni can evade immune responsiveness in the CNS.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号