首页 | 本学科首页   官方微博 | 高级检索  
检索        


Development and Application of Multiprobe Real-Time PCR Method Targeting the hsp65 Gene for Differentiation of Mycobacterium Species from Isolates and Sputum Specimens
Authors:Kijeong Kim  Hyungki Lee  Mi-Kyung Lee  Seoung-Ae Lee  Tae-Sun Shim  Seong Yong Lim  Won-Jung Koh  Jae-Joon Yim  Bazarragchaa Munkhtsetseg  Wonyong Kim  Sang-In Chung  Yoon-Hoh Kook  Bum-Joon Kim
Abstract:We developed a multiprobe real-time PCR assay targeting hsp65 (HMPRT-PCR) to detect and identify mycobacterial isolates and isolates directly from sputum specimens. Primers and probes for HMPRT-PCR were designed on the basis of the hsp65 gene sequence, enabling the recognition of seven pathogenic mycobacteria, including Mycobacterium tuberculosis, M. avium, M. intracellulare, M. kansasii, M. abscessus, M. massiliense, and M. fortuitum. This technique was applied to 24 reference and 133 clinical isolates and differentiated between all strains with 100% sensitivity and specificity. Furthermore, this method was applied to sputum specimens from 117 consecutive smear-positive patients with smear results of from a trace to 3+. These results were then compared to those obtained using the rpoB PCR-restriction analysis method with samples from cultures of the same sputum specimens. The HMPRT-PCR method correctly identified the mycobacteria in 89 samples (76.0%, 89/117), and moreover, the sensitivity level was increased to 94.3% (50/53) for sputa with an acid-fast bacillus score equal to or greater than 2+. Our data suggest that this novel HMPRT-PCR method could be a promising approach for detecting pathogenic mycobacterial species from sputum samples and culture isolates routinely in a clinical setting.Of the known species in the genus Mycobacterium, Mycobacterium tuberculosis is the most common and most important pathogen, causing 2 million deaths and over 8 million cases of tuberculosis worldwide annually (2, 3, 4, 7). In addition to M. tuberculosis, infections with nontuberculosis mycobacteria (NTM) can also cause clinical problems. Because of the different pathogenic potentials and susceptibilities of different mycobacterial species, the treatments of mycobacterial infections are different (13, 30, 33, 34). Thus, it is very important to differentiate between mycobacteria at the species level during early-stage diagnostics.Instead of a culture-based identification scheme, which may take 4 to 6 weeks or longer to identify slowly growing mycobacteria, PCR-based protocols (sequencing or PCR-restriction analysis PRA]) targeting chronometer molecules, such as 16S rRNA (5, 6, 28), hsp65 (17, 19, 25), and rpoB (1, 16, 21), have been widely used to identify mycobacteria. However, in spite of the successful application of these conventional PCR-based methods to culture isolates, there are some drawbacks in their direct application to clinical specimens. This is especially true for sputum samples, which also contain numbers of commensal bacteria from the respiratory tract, producing confusing results by the simultaneous amplification of both commensals and mycobacterial strains. We have recently developed several methods for mycobacterial species identification based on amplification of hsp65 gene sequences directly from sputum samples (15, 27). Limitations due to the intrinsic features of conventional PCR prevented feasible identification of mycobacterial species from sputum samples using this method.The use of the real-time PCR assay in the diagnosis of many infectious diseases has been increasing, as it represents an appealing alternative to conventional PCR. It is an improvement over conventional methods because of its increased sensitivity and specificity, low contamination risk, and ease of performance and speed (8). In particular, fluorescence resonance energy transfer (FRET)-based real-time PCR permits not only the simultaneous identification of multiple target species but also the direct identification of target species from primary specimens such as sputum specimens through melting curve analysis of the amplification product (8). These characteristics of FRET-based real-time PCR provide a useful advantage for the identification of mycobacteria from sputum samples. Recently, several real-time PCR-based methods for mycobacterial detection and identification have been developed and evaluated (9, 22, 23, 26, 29). However, direct application of the real-time PCR-based method to primary specimens was generally limited to M. tuberculosis alone (11, 26). So far, a method which can simultaneously identify several pathogenic NTM as well as M. tuberculosis from primary sputum samples in a single reaction has not been developed.In the present study, we sought to develop a multiprobe real-time PCR targeting the hsp65 gene (HMPRT-PCR) based on melting curve analysis (HybProbes). This enabled the simultaneous identification of several pathogenic mycobacteria, including M. tuberculosis, in a single PCR performed on cultures and sputum samples. The usefulness of these methods was evaluated by blindly applying them to cultured and sputum samples.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号